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This thesis has three parts. First, we survey Stefan and Sussmann’s 

work on singular foliations, highlighting diffeological objects that arise. 

We then propose a transverse equivalence of singular foliations, and show: 

equivalent foliations have diffeomorphic leaf spaces; the converse need 

not hold; and regular foliations with Hausdorff holonomy groupoid are 

transverse equivalent if and only if they are Morita equivalent.

Second, we show that for a singular foliation (M, F ), the quotient 

π : M → M/F induces an isomorphism π∗ : Ω•(M/F ) → Ω•(M, F ), 

where Ω•(M, F ) denotes the complex of F -basic forms on M, when: F is 

regular; when the union of k-leaves is a diffeological submanifold, for all 

k; and when π∗ is an isomorphism if we excise the 0-leaves.

Finally, we introduce diffeological quasifolds and quasifold groupoids. A 

quasifold is locally modelled by the affine action of countable groups Γ  on 

Rn. When the Γ are finite, we recover orbifolds. We show that the categories 

of diffeological quasifolds and quasifold groupoids are equivalent, when 

we restrict the arrows to local diffeomorphisms and locally invertible 

bibundles, respectively.
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1
I N T R O D U C T I O N

On the nLab page for “generalised smooth spaces,” we find the charming
aphorism:

Manifolds are fantastic spaces. It’s a pity that there aren’t more
of them. 1

Indeed, it is quite easy to inadvertently exit the category of smooth man-
ifolds. Consider, for instance, the torus T2 := R2/Z2, viewed as the
quotient of R2 by the integer lattice Z2. Let L̃θ be a line in R2 through the
origin, with slope θ. Then Lθ := L̃θ/Z2 is a Lie subgroup of T2, so we may
consider the quotient space Tθ := T2/Lθ . If the slope θ is rational, then Lθ

is a circle, and Tθ is also a circle. But if θ is irrational, then Lθ is isomorphic
to the Lie group R, and Tθ - which we call an irrational torus - is far from a
manifold: its topology is trivial.

To assuage this seemingly abrupt dependence on θ, we place the Tθ into
the category of diffeological spaces. Formally introduced by Souriau in
1980, but closely related to structures considered by Chen in the 1970s,
a diffeological space is a set X equipped with a collection of maps (called
plots) from open subsets of Cartesian spaces into X satisfying three axioms
(Definition 2.1). These plots take the role of charts of smooth manifolds,
thus giving a notion of smooth maps between diffeological spaces, and we
can form the category of diffeological spaces and smooth maps between
them. Subsets, quotients, and function spaces of diffeological spaces all
carry natural diffeologies, and manifolds are naturally diffeological spaces.
In particular, the Tθ all inherit the quotient diffeology from T2 regardless
of the slope θ.

The benefit of viewing Tθ as diffeological spaces comes from the fol-
lowing result, proved by Iglesias-Zemmour and Donato in 1985 [DI85].

Theorem. The diffeology of Tθ is not trivial. Moreover, Tθ and Tθ′ are diffeologi-
cally diffeomorphic if and only if

θ′ =
aθ + b
cθ + d

(1.1)

1 https://ncatlab.org/nlab/show/generalized+smooth+space
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1.1 chapter overview 2

for some a, b, c, d ∈ Z with ad − bc = ±1.

An alternative approach to the irrational tori is through “higher struc-
tures,” by which we mean Lie groupoids or (singular) foliations:

• we may encode the data of the action of Lθ on T2 in the action
groupoid Gθ := Lθ ⋉ T2 ⇒ T2;

• or we may consider the regular foliation Fθ given by the partition of
T2 into the orbits of Lθ .

More generally, every Lie groupoid G ⇒ M or foliation (M,F ) sits above
a natural diffeological quotient space. For a Lie groupoid, we consider its
space of orbits M/G, and for a foliation, we consider its leaf space M/F .
The motivating question of this thesis is:

Question. What information about a higher structure on a manifold M (a
Lie groupoid G ⇒ M or a singular foliation (M,F )) can we recover from
the underlying diffeological quotient space?

We approach this question in three ways: through notions of transverse
equivalence of singular foliations, through the basic complex of a singular
foliation, and through the notion of diffeological quasifolds and quasifold
groupoids. We describe these approaches in the chapter overview below.

1.1 chapter overview

The contents of this thesis are derived from a paper and two submitted
preprints, namely, in order of completion during my degree: [Miy23a],
[KM22], and [Miy23c]. These works are self-contained, and therefore ad-
mit some overlap between them. In order to avoid the most egregious
repetition, in Chapter 2 we review the elements from the study of dif-
feology, Lie groupoids, and regular foliations that are common to all
three works. Sections 2.1 and 2.2 are drawn from [KM22], and Section
2.3 from [Miy23a]. We emphasize that the notion of a locally invertible
bibundle (Definition 2.30) is new, and that Section 2.3 covers properties of
the holonomy groupoid that are not often spelled out in the literature.

Chapter 3 is essentially [Miy23c]. Here we introduce singular foliations,
which are partitions of a manifold M into connected submanifolds of
perhaps varying dimension, fitting together smoothly. We pay special
attention to Stefan [Ste74] and Sussmann’s [Sus73] contributions and their
interaction with diffeology. Of particular note is our Proposition 3.26,
which states that every singular foliation is induced by the orbits of a
connected diffeological group acting on M. We then propose, in Defini-
tion 3.41, a notion of transverse equivalence of singular foliations, which



1.1 chapter overview 3

we call Molino transverse equivalence after P. Molino, who considered this
equivalence in the regular case. In Proposition 3.43, we show that a Molino
transverse equivalence of singular foliations descends to a diffeological
diffeomorphism between their leaf spaces. In Corollary 3.50, we conclude
that regular foliations are Molino transverse equivalent if and only if
their holonomy groupoids are Morita equivalent, provided these holon-
omy groupoids are Hausdorff. In the case of irrational tori, the holonomy
groupoid of (T2,Fθ) is the action groupoid Gθ , which is Hausdorff. Thus,
by Corollary 3.50, the foliations Fθ and Fθ′ are Molino transverse equiv-
alent if and only if the action groupoids Lθ ⋉ T2 and Lθ′ ⋉ T2 are Morita
equivalent. By Proposition 3.43 (but also Proposition 2.32), this implies that
Tθ and Tθ′ are diffeomorphic, and in particular (1.1) must hold. We address
the converse in Chapter 5. Our Molino transverse equivalence derives from
Molino’s ideas in [Mol88, Chapter 2], and is related to Garmendia and
Zambon’s Hausdorff Morita equivalence from [GZ19].

Chapter 4 gives the main result of [Miy23a]. It treats the problem of
relating the complex of diffeological differential forms on the leaf space
M/F to the complex of basic differential forms on (M,F ). A differential
form α on M is F -basic if, for every vector field X tangent to the leaves,
both

ιXα = 0 and LXα = 0.

The F -basic forms assemble into a de Rham subcomplex Ω•
b(M,F ) of

Ω•(M). On the other hand, the diffeological leaf space M/F carries
diffeological differential forms. The quotient map π : M → M/F induces
a pullback map π∗ : Ω•(M/F ) → Ω•

b(M,F ). Theorems 4.11, 4.20, and
4.27 describe three situations in which pullback π∗ by the quotient map
π : M → M/F induces isomorphisms of these complexes, respectively:

• when F is a regular foliation;

• when the union of k-leaves of F is a diffeological submanifold of M,
for all k;

• when π∗ is an isomorphism if we excise the 0-leaves.

For the irrational tori, Theorem 4.11 shows that we have an isomorphism
π∗ : Ω•(Tθ) → Ω•

b(T
2,Fθ). Some time after proving Theorem 4.11, we

found that Hector, Macías-Virgós, and Sanmartín-Carbón came to the same
conclusion in [HMVSC11]. We were not aware of their work at the time,
and our techniques admit Corollary 4.12, a generalization of Theorem 4.11.
Theorem 4.20 generalizes the results of Karshon and Watts [KW16] and
Watts [Wat22]. Whether π∗ is always an isomorphism remains an open
question. We indicate directions for future research in Section 4.3.
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Finally, Chapter 5 presents [KM22]. We introduce (the bicategories of)
diffeological quasifolds and effective quasifold groupoids. These generalize
orbifolds and orbifold groupoids; whereas orbifolds are locally modelled
by linear actions of finite groups on Rn, quasifolds are locally modelled
by affine actions of countable groups on Rn. Our Theorem 5.32 states
that these two categories are isomorphic when we take the arrows to be
local diffeomorphisms and locally invertible bibundles, respectively. In
particular, the irrational tori Tθ are diffeological quasifolds, and the action
groupoids Gθ are Morita equivalent to quasifold groupoids. Therefore
Theorem 5.32 implies that the Tθ are diffeomorphic if and only if the Gθ

are Morita equivalent, thus if and only if (1.1) holds. We end with an
interesting non-example, and in Section 5.5 describe some research in
progress. The preprint [KM22] is joint work with Yael Karshon, and the
project was initiated in Masrour Zoghi’s thesis [Zog10]. Iglesias-Zemmour
and Prato also introduced diffeological quasifolds in [IZP21].

Chapters 3, 4, and 5 all rely on material in Chapter 2, but are otherwise
independent. To facilitate their independence, the introductions to each
chapter are those from the corresponding papers. These introductions
are more comprehensive than this overview, and contain the necessary
historical context and relevant literature.



2
D I F F E O L O G Y, L I E
G R O U P O I D S , A N D R E G U L A R
F O L I AT I O N S

The first two sections of this review chapter are from [KM22], and the last
is from [Miy23a].

2.1 the basics of diffeology

In this section, we provide a review of the basic concepts from diffeology
that we will use throughout this thesis. Diffeology was introduced in the
1980s by J. M. Souriau, and K. T. Chen worked with similar structures in
the 1970s. Our main reference is Iglesias-Zemmour’s book [IZ13]. Note
that this book has been updated and reprinted in [IZ22].

Definition 2.1 (Diffeology). Let X be a set. A parametrization into X is a
map from an open subset of a Cartesian space into X. A diffeology on X is
a set D of parametrizations, whose members are called plots, such that

• constant maps are plots;

• if a parametrization p : U → X is such that about each r ∈ U, there is
an open V ⊆ U and a plot q : V → X such that p|V = q, then p is a
plot;

• if p : U → X is a plot and V is an open subset of a Cartesian space,
then for any smooth F : V → U, the pre-composition F∗p is a plot.

A set equipped with a diffeology is a diffeological space.

The set of locally constant parametrizations into X, and the set of all
parametrizations into X, are both diffeologies, called respectively discrete
and coarse. Every other diffeology sits between these two. A classical
smooth manifold1 M carries a canonical diffeology DM consisting of the
smooth maps (in the usual sense) from subsets of Cartesian spaces into M.

1 A smooth manifold is a topological space equipped with a maximal smooth atlas that,
unless we say otherwise, is Hausdorff and second-countable. If we use the term “manifold”
unqualified, we mean a smooth manifold.

5



2.1 the basics of diffeology 6

Definition 2.2 (Smooth maps). We say a map f : X → Y between diffeo-
logical spaces is (diffeologically) smooth if for every plot p of X, the pullback
p∗ f is a plot of Y. Denote the set of smooth maps from X to Y by C∞(X, Y).

If X is discrete, or Y is coarse, all maps X → Y are smooth. A map
between classical manifolds is diffeologically smooth if and only if it
is smooth in the classical sense. Diffeological spaces and smooth maps
between them form a category.

Definition 2.3 (Category of diffeological spaces). The category Diffeol
has objects diffeological spaces, and arrows smooth maps between them.
When we need to view Diffeol as a bicategory, we simply add the identity
2-arrows.

Assigning to each classical smooth manifold M the diffeological space
(M,DM) defines a full and faithful functor from the category of classical
manifolds, with their smooth maps, into Diffeol.

We will require a notion of locality for diffeological spaces.

Definition 2.4 (D-topology). The D-topology on a diffeological space X is
the finest topology in which all plots are continuous. Equivalently, U ⊆ X
is D-open if and only if p−1(U) is open for all plots p.

Every smooth map is continuous in the D-topology. The D-topology of
a classical manifold M, viewed as a diffeological space, is its manifold
topology.

Every subset of a diffeological space inherits a subset diffeology:

Definition 2.5 (Subset diffeology). For a subset S of a diffeological space
X, with inclusion denoted ι : S ↪→ X, the subset diffeology on S consists of
all parametrizations p : U → S such that ι ◦ p is a plot of X.

Given a diffeological space X and a subset S, the D-topology of the
subset diffeology on S is contained in the subset topology that S inherits
from the D-topology on X. When S is a D-open subset of X, these topolo-
gies coincide. We use the D-topology and subset diffeology to define local
diffeomorphisms:

Definition 2.6 (Local diffeomorphisms). A map f : X → Y between
diffeological spaces is a local diffeomorphism if, for each x ∈ X, the map
restricts to a diffeomorphism between some D-open neighbourhoods of x
and f (x). Denote the set of local diffeomorphisms by Diffloc(X, Y).

We call a diffeomorphism f : U → U′, between D-open subsets U ⊆ X
and U′ ⊆ Y, a transition from X to Y. We sometimes write f : X 99K Y.
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We emphasize that local diffeomorphisms are globally defined, and
transitions are locally defined.

A diffeology also passes to quotients:

Definition 2.7 (Quotient diffeology). Given a diffeological space X, and
equivalence relation R, with quotient map π : X → X/R, the quotient
diffeology on X/R consists of those parametrizations p : U → X/R such
that about each r ∈ U there is an open V ⊆ U and a plot q : V → X such
that p|V = π ◦ q. In a diagram,

X

r ∈ V U X/R.

π
∃q

p

The D-topology of the quotient diffeology is the quotient topology
induced by the D-topology on X. Closely related to the quotient diffeology
is the notion of a subduction between diffeological spaces.

Definition 2.8. A smooth surjective map f : X → Y is a subduction if for
every plot p : U → Y, and every r ∈ U, there is a neighbourhood V of r
and a plot q : V → X such that p|V = f ◦ q.

Evidently, quotient maps are subductions. Surjective submersions be-
tween classical manifolds are also subductions. Subductions satisfy the
following universal property ([IZ13, Article 1.51]).

Lemma 2.9. Suppose π : X → Y is a subduction. Then f : Y → Y′ is smooth
(resp. a subduction) if and only if f ◦ π : X → Y′ is smooth (resp. a subduction).

Finally, function spaces are naturally diffeological spaces.

Definition 2.10 (Functional diffeology). Let X and Y be diffeological
spaces. The standard functional diffeology on C∞

loc(X, Y) consists of those
parametrizations p : U → C∞

loc(X, Y) satisfying: about each r0 ∈ U and
x0 ∈ dom p(r0), there are open neighbourhoods s f V ⊆ U, and (D-open)
U ⊆ dom p(r0) such that

• U ⊆ dom p(r) for all r ∈ V;

• the map V× U → Y given by (r, x) 7→ p(r)(x) is smooth.

We equip C∞(X, Y) with its subset diffeology inherited from C∞
loc(X, Y).

This is the coarsest diffeology in which the evaluation map X×C∞(X, Y) →
Y given by (x, f ) 7→ f (x) is smooth. We similarly equip Diffloc(X, Y) and
Diff(X, Y) with their subset diffeologies.
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For a classical manifold M, one can prove the composition and inversion
maps on Diff(M) are smooth, using the inverse function theorem. This
makes Diff(M) a diffeological group, a definition due to Souriau. These
groups partly motivated Souriau’s definition of diffeology. In general, the
composition on Diff(X) is smooth, but it is an open question whether
inversion is necessarily smooth.

Diffeological forms

Now we introduce diffeological differential forms. These will be most
useful in Chapter 4

Definition 2.11 (Diffeological forms). A diffeological k-form α on X is an
assignment to each plot p : U → X a differential k-form α(p) ∈ Ωk(U)

such that for every open subset V of a Cartesian space, and every smooth
map F : V → U, we have

α(p ◦ F) = F∗(α(p)).

Denote the set of diffeological k-forms by Ωk(X), and the set of diffeologi-
cal forms by Ω•(X).

As with usual differential forms, we can pullback diffeological forms by
smooth functions.

Definition 2.12 (Pullbacks). Let f : X → Y be smooth, and α ∈ Ωk(Y). The
pullback f ∗α ∈ Ωk(X) is defined on the plots of X by ( f ∗α)(p) := α( f ◦ p).

The set Ωk(X) is naturally a vector space: given α, β ∈ Ωk(X) and λ ∈ R,
define for all plots p,

(λα + β)(p) := λα(p) + β(p).

The space Ω•(X) also carries a differential d and wedge product ∧, respec-
tively defined by

(dα)(p) := dα(p), (α ∧ β)(p) := α(p) ∧ β(p).

With respect to the grading Ω•(X) =
⊕∞

k=0 Ωk(X), the space (Ω•(X), d,∧)
is a differential commutative graded algebra. Pullback by a smooth func-
tion is a morphism of commutative differential graded algebras.

For example, consider a classical manifold M. To each classical differ-
ential form α we may associate a diffeological form α by α(p) := p∗α.
Conversely, to each diffeological form α, we can specify a classical form
α by declaring that in each chart φ of M, we have (φ−1)∗α := α(φ−1).
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Identifying α and α identifies the classical de Rham complex on M with
the diffeological one. Under this identification, the pullback by a smooth
function viewed in the classical and diffeological senses agree. Therefore,
we will freely switch between viewing classical forms on M as diffeological
ones, and vice versa.

2.2 the basics of lie groupoids

In this section, we introduce basic facts from the study of Lie groupoids.
We work inside the bicategory Lie groupoids, denoted Bi (after Lerman
[Ler10]), whose objects are Lie groupoids, whose arrows are principal
bibundles, and whose 2-arrows are bibundle isomorphisms. For a thorough
treatment, see Lerman’s review [Ler10], or Moerdijk and Mrcǔn’s book
[MM03]. While the material in this subsection is standard, we take a
less common local-first approach to the definition of principal bibundles.
Our definition of locally invertible bibundle is new. At the end of this
subsection, we introduce the functor F : Bi → Diffeol.

A Lie groupoid is a small category G ⇒ G0 with invertible arrows, such
that the base G0 is a (Hausdorff and second-countable) smooth manifold,
the arrow space G is a not necessarily Hausdorff nor second-countable
smooth manifold, all structure maps are smooth, and furthermore the
source map s (hence the target map t) is a smooth submersion with
Hausdorff fibers. We write the composition of arrows g : x 7→ y and
g′ : y 7→ z as g′g : x 7→ z.

If f : M → G0 is a smooth map, we may form the pullback (not
necessarily Lie) groupoid f ∗G, whose base is M and whose arrows from x
to y are arrows from f (x) to f (y). When the map

t ◦ pr1 : G ×s f M → G0

is a submersion, the pullback f ∗G is naturally a Lie groupoid. In particular,
if ι : U → G0 is a submersion, we may form the pullback groupoid ι∗G ⇒
U . If U is an open subset of G0, we denote the corresponding pullback
groupoid by G|U , and identify its arrow space with s−1(U) ∩ t−1(U). We
say that G is étale if s (hence t) is a local diffeomorphism. We say that G
is proper if its arrow space is Hausdorff and the map (s, t) : G → G0 × G0

is proper. By an isomorphism of Lie groupoids we mean a smooth functor
F : G → H such that there exists a smooth functor F−1 : H → G for which
FF−1 and F−1F are the identity functors. The orbit space of a Lie groupoid
G is the quotient of G0 by this relation: x ∼ y if there is an arrow x 7→ y.
We denote the orbit space of G by |G| or G0/G.
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The full definition of a bicategory is rather technical, and we refer the
reader to [Ler10] for an introduction. For our purpose, a bicategory consists
of objects, arrows between objects, and 2-arrows between arrows. These
must satisfy some compatibility and composition conditions, which we
do not write. The objects and arrows almost form a category, except that
composition of arrows need not be associative. Instead, for any composable
f , g, h, there exists an invertible 2-arrow α : f (gh) → ( f g)h. The arrows
and 2-arrows form a category.

A first example of a Lie groupoid is an action groupoid. Given a Lie
group G action on a manifold M (from the left), the action groupoid G ⋉ M
has arrow space G × M and base space M. The source and target maps
are s(g, x) = x and t(g, x) = g · x.

Definition 2.13 (Right actions). A right action of a Lie groupoid H ⇒ H0

on a manifold P consists of maps µ : P ×a t H → P and a : P → H0. We
call a the anchor, and µ the multiplication, and denote µ(p, h) by p · h. We
have the following Cartesian square on the left, and require the following
commuting diagram of smooth functions on the right

P ×a t H H

P H0

pr2

pr1 t

a

P ×a t H H

P H0.

pr2

µ s

a

Furthermore we require

• (p · h) · h′ = p · (hh′) whenever this makes sense, and

• p · 1a(p) = p for all p ∈ P.

Given a right H action, we may form the action groupoid P ⋊ H, with
arrows P ×a t H, base P, source µ, target pr1, and multiplication of arrows
(p, h)(p′, h′) = (p, hh′). Furthermore, a and pr2 assemble into a smooth
functor of Lie groupoids P ⋊ H → H.

Remark 2.14.

(i) If O ⊆ P is an open, H-invariant subset of P, then H acts on O,
with the same anchor a : O → H0 and the same multiplication
µ : O ×a t H → O.

(ii) If V ⊆ H0 is open, then a−1(V) need not be H-invariant, but we still
have an action of H|V on a−1(V), with the same anchor a : a−1(V) →
V, and the same multiplication.
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Fix a Lie groupoid H. A principal H-bundle over a manifold B will
consist of a manifold P, a right H action on P, and a map π : P → B,
satisfying certain axioms. We will denote such a principal bundle by
P π−→ B. We will formulate these axioms using the notion of a trivial
bundle.

Definition 2.15. Fix a smooth manifold M, and a map ϕ : M → H0.
The trivial H-bundle over ϕ consists of the space P := M ×ϕ t H, equipped
with the right H action on M ×ϕ t H that is given by the anchor map
s ◦ pr2 : M ×ϕ t H → H0 and the multiplication (m, h) · h′ := (m, hh′), and

equipped with the projection M ×ϕ t H
pr1−→ M.

Note that in a trivial H-bundle, the fibers of the projection map P π−→ M
are the H-orbits, and the H action on P is free, meaning that if p · h = p · h′,
then h = h′. The following example motivates our definition.

Example 2.16. If we take M = H0, and ϕ : H0 → H0 the identity map,
identifying P = H0 ×ϕ t H with the arrow space H, we find that the trivial
H-bundle over the identity map is the right action of H on its arrow space
along the anchor s, given by right multiplication. The trivial H-bundle
over an arbitrary ϕ : M → H0 gives a Cartesian square,

M ×ϕ t H H

M H0

pr2

pr1 t

ϕ

in which the top map is H-equivariant, and the vertical maps are H-
invariant. If we take H to be a Lie group, viewed as a Lie groupoid over a
point H ⇒ {pt}, then the right action of H on itself is the usual one given
by right multiplication, and the trivial H-bundle over M → {pt} is a usual
trivial H-bundle M × H → M.

Definition 2.17 (Principal bundles). Fix a smooth manifold B and a Lie
groupoid H. A principal H-bundle over B consists of a manifold P, a right H
action on P along the anchor a, and an H-invariant map P π−→ B, such that
the following holds: about every b ∈ B, there exist an open neighbourhood
U, a section σ : U → P of π, and an H-equivariant diffeomorphism Φ
fitting in the commutative diagram2

2 Here the action of H on P|U := π−1(U) ⊆ P is induced by H acting on P, according to
Remark 2.14 (i); the set P|U is H-invariant by our assumption on π.
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π−1(U) U ×aσ t H

U.

Φ

π
pr1

(2.1)

In other words, P|U := π−1(U) is isomorphic to the trivial H-bundle over
aσ : U → H0.

Remark 2.18. Other authors, such as [Ler10] and [MM03], define a principal
right H-bundle to be a manifold P with right H action, and an H-invariant
surjective submersion P π−→ B, such the map

P ×a t H → P ×π π P, (p, h) 7→ (p, p · h)

is a diffeomorphism. This definition is equivalent to ours, and will be
useful in Lemma 2.29. Moreover, if we view P ×π π P as a Lie groupoid over
P (with source and target the projection maps), the map above assembles
with the identity P → P into an isomorphism of the Lie groupoids P ⋊ H
and P ×π π P. This observation is relevant in proving Proposition 4.8.

Example 2.19. Every trivial H-bundle over ϕ : B → H0 is a principal H-
bundle: take σ : B → B ×ϕ t H to be σ(b) := (b, 1ϕ(b)), note that aσ = ϕ,

and take Φ to be the identity map on B ×ϕ t H. In particular, H t−→ H0,
where H acts on its arrows by right multiplication, is a principal H-bundle,
with σ(y) = 1y. If H is a Lie group viewed as a Lie groupoid over a point,
then a principal H-bundle agrees with the usual notion of a principal H
group bundle.

We can pull back principal H-bundles by smooth maps. We will need
this construction to associate a principal bibundle to a smooth functor.

Definition 2.20 (Pullback bundle). The pullback of a principal right H-
bundle P π−→ B by a smooth map f : M → B, denoted f ∗(P π−→ B), is the
principal right H-bundle consisting of the manifold M ×f π P, the right H
action along the anchor map a ◦ pr2 given by (m, p) · h := (m, p · h), and

the projection M ×f π P
pr1−→ M.

For a Lie groupoid G, we can similarly define left G actions, and left
principal G-bundles.

Example 2.21. If H is a Lie groupoid acting on P from the right along
anchor a : P → H0, we can get a left action of H on P along a by setting
h · p := p · h−1. We can similarly get a left action from a right action.

Now we introduce bibundles, principal bibundles, invertible bibundles,
and locally invertible bibundles.



2.2 the basics of lie groupoids 13

Definition 2.22 (Principal bibundle).

• Given Lie groupoids G and H, a bibundle P : G → H is a manifold P
equipped with a left G action along a, and a right H action along a′,
such that a is H-invariant, a′ is G-invariant, and the actions of G and
H commute.

• We say P is a principal bibundle if P a−→ G0 is a principal right H-
bundle.

• A bibundle P : G → H is invertible or biprincipal if both a and a′

are principal bundles. We say Lie groupoids G and H are Morita
equivalent if there is an invertible bibundle between them.

A bibundle morphism from a bibundle P to a bibundle Q is a smooth map
α : P → Q that commutes with the structure maps and is equivariant with
respect to both the G and H actions.

Remark 2.23. Every principal bibundle morphism is a bibundle isomor-
phism. For details, see [MM03, Remark 5.34(5)] or [Ler10, Remark 3.32].

The diagram below depicts a bibundle.

G ⟳ P ⟲ H

G0 H0.

a a′

If P : G → H is a bibundle, then after swapping the actions (as in
Example 2.21), we obtain a bibundle P−1 : H → G. If P a−→ G0 is a principal
right H-bundle, P a−→ G0 becomes left H-principal. Similarly, a principal left

G-bundle P a′−→ H0 becomes a principal right G-bundle. It follows that if P
is invertible, then swapping both the actions returns an invertible bibundle
P−1 : H → G. The compositions (see the paragraph after Example 2.24)
P−1P and PP−1 are isomorphic to idG and idH, respectively.

Example 2.24. The identity bibundle from a Lie groupoid G to itself, idG :
G → G, is given by P = G, with the left and right actions of G on itself. It
is invertible.

For a more sophisticated example, consider a left Lie group action G ⟳
M and a right Lie group action N ⟲ H. A bibundle P : G ⋉ M → N ⋊ H
between the action groupoids is given by the diagram

G ⟳ P ⟲ H

G ⟳ M N ⟲ H,

a a′
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where a is H-invariant and G-equivariant, and a′ is G-invariant and H-
equivariant, and the G and H actions on P commute. This bibundle is
principal if and only if a is a principal right H-bundle, and it is invertible
if and only if, additionally, a′ is a principal left G-bundle.

Principal bibundles can be composed: for principal bibundles P : G → H
and Q : H → K, with left and right anchors a, a′ and b, b′, respectively,
the composition Q ◦ P is (P ×H0 Q)/H (where the H action on the fibered
product P ×H0

Q is (p, q) · h = (p · h, h−1 · q)), with left and right anchors
α([p, q]) = a(p) and β′([p, q]) = b′(q). In a diagram,

(P ×H0 Q)/H

P Q

G0 H0 K0

α β′

a a′ b b′

See [Ler10, Remark 3.30] for details. However, composition of principal
bibundles is not associative. Instead, it is associative up to bibundle iso-
morphism, so we have a bicategory:

Definition 2.25 (Bicategory of Lie groupoids). The bicategory Bi has ob-
jects Lie groupoids, arrows principal bibundles, and 2-arrows morphisms
of bibundles.

Remark 2.26. By identifying isomorphic principal bibundles, we obtain
the Hilsum-Skandalis category HS. Its objects are Lie groupoids, and its
arrows are isomorphism classes of principal bibundles.

Example 2.27. Every smooth functor of Lie groupoids induces a principal
bibundle. Indeed, given a smooth functor F : G → H with F0 : G0 → H0,
the principal H-bundle F∗

0 (H t−→ H0) is naturally a bibundle G → H,
which we denote ⟨F⟩. The groupoid G acts along the anchor map pr1,
with multiplication g · (x, h) := (t(g), F(g)h). The map F 7→ ⟨F⟩ respects
composition in the sense that ⟨F ◦ G⟩ ∼= ⟨F⟩ ◦ ⟨G⟩.

A smooth natural transformation between smooth functors α : F →
G gives rise to a bibundle morphism ⟨α⟩ : ⟨F⟩ → ⟨G⟩. This bibundle
morphism is an isomorphism by Remark 2.23.

We now introduce the notion of the restriction of a bibundle, and then,
of a locally invertible bibundle.

Definition 2.28. If P : G → H is a bibundle as in Definition 2.22 and
U ⊆ G0 and V ⊆ H0 are open subsets then P|VU := a−1(U) ∩ (a′)−1(V),
equipped with the actions of G|U and H|V described by Remark 2.14, is a
bibundle, which we call the restriction of P.
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Lemma 2.29. If G and H are Lie groupoids, P : G → H is a principal bibundle,
and U ⊆ G0 and V ⊆ H0 are open subsets, and Q : G|U → H|V is a principal
bibundle such that the diagram below commutes (up to isomorphism of bibundles)

G|U H|V

G H,

Q

⟨ιU⟩ ⟨ιV⟩

P

(2.2)

then P|VU exists and is isomorphic to Q (here ιU is the inclusion functor). Con-
versely, if P|VU is principal, then the diagram (2.2) commutes with Q := P|VU .

Proof. By definition, the principal bibundle ⟨ιU⟩ is U ×ιU t G, which we
identify with t−1(U) via (x, g) 7→ g. The G|U action is by left multiplication.
Then

P ◦ ⟨ι|U⟩ = (t−1(U) ×s a P)/G

We denote its elements by [g, p]. Similarly, we identify the principal bibun-
dle ⟨ιV⟩ with t−1(V), and find that

⟨ιV⟩ ◦ Q = (Q ×b′ t t−1(V))/H|V ,

where b′ is the right anchor for Q. We denote its elements by [q, h].
Denote an isomorphism P ◦ ⟨ιU⟩ ↔ ⟨ιV⟩ ◦ Q element-wise by [g, p] ↔

[q, h]. Then, define a map Q → P by q 7→ g · p, where [q, 1b′(q)] ↔ [g, p]
under the assumed isomorphism. This is well-defined because [g1, p1] =

[g2, p2] implies g1 · p1 = g2 · p2. Now, notice that a(g · p) = t(g) ∈ U, and

a′(g · p) = a′(p) = b′(q) ∈ V,

where the last equality follows from the requirement that an isomorphism
of bibundles commutes with the anchor maps. So we have defined a map
Q → P|VU . Its inverse is the map p 7→ q · h, where [1a(p), p] ↔ [q, h]. Both
these maps are smooth, and furthermore they are G|U × H|V-equivariant.
This shows that P|VU is a principal bibundle, and is isomorphic to Q.

For the converse, we define the diffeomorphism P ◦ ⟨ιU⟩ → ⟨ιV⟩ ◦ P|VU
as follows. Given [g, p], denote p∗ := g · p, and note that a(p∗) = t(g) ∈ U.
Now take a local section σ : U → P|VU of a about a(p∗), which is possible
because P|VU

a−→ U is principal by assumption. Then q := σ(a(p∗)) and
p∗ are in the same a-fiber, hence, by principality of the H action, there
is a unique h ∈ H (depending smoothly on p and g; see Remark 2.18)
such that q · h = p∗. Necessarily t(h) = a′(q) ∈ V. We claim the desired
diffeomorphism is [g, p] 7→ [q, h].
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We show this is well-defined. Suppose [g1, p1] = [g2, p2]. Then, as above,
we have g1 · p1 = g2 · p2 =: p∗, so we only need to show the definition is
independent of the section σ. Suppose σi : U → P|VU are two local sections
of a about a(p∗). Set qi := σi(a(p∗)), and set hi ∈ H to be the unique arrows
such that qi · hi = p∗. Then both qi · hi are in the same a-fiber, so there is
some unique h̃ ∈ H such that q2 = q1 · h̃. Then q2 · h2 = q2 · (h̃h2), and
uniqueness of h1 means h̃h2 = h1. It follows that [q2, h2] = [q1 · h̃, h̃−1h1] =

[q1, h1], as required.
We leave it to the reader to check that this map is G|U × H-equivariant.

It is also smooth: the maps (g, p) 7→ (σ(a(p∗)), h) provide local liftings.
Finally, it is a bibundle isomorphism by Remark 2.23.

Definition 2.30 (Locally invertible bibundles). A bibundle P : G → H
is locally invertible if it is principal, and about every x ∈ G0 and y ∈
a′(a−1(x)) ⊆ H0, there are open neighbourhoods U of x and V of y, such
that the restriction P|VU : G|U → H|V is invertible.

The composition of invertible bibundles is invertible, and the compo-
sition of locally invertible bibundles is locally invertible, by Lemma 2.29.
Our main source of locally invertible bibundles comes from certain smooth
functors F : G → H.

Lemma 2.31. Suppose F : G → H is a smooth functor such that, for every
x ∈ G0, there exists open neighourhoods U of x in G0 and V of F(x) in H0 such
that the functor F restricts to an isomorphism F|VU : G|U → H|V . Then ⟨F⟩ is a
locally invertible bibundle.

Proof. Take F : G → H as given in the setup. We will show that ⟨F⟩|UV
is invertible. First, observe that setting Q := ⟨F|VU⟩ and P := ⟨F⟩ makes
diagram (2.2) commute, so by Lemma 2.29, we see that ⟨F|VU⟩ is isomorphic
to ⟨F⟩|VU . Therefore it suffices to show ⟨F|UV ⟩ is invertible.

Since F|VU is an isomorphism, we simplify notation and assume F is
an isomorphism, and prove ⟨F⟩ is invertible. In other words, we must

show G0 ×F t H
s◦pr2−−→ H0 is a left G-principal bundle. In fact, we show it is

isomorphic to a trivial left G-bundle. Take the section σ of s ◦ pr2 defined
by σ(y) := (F−1(y), 1y), and define Φ, in the diagram below

G ×s pr1 σ H0 G0 ×F t H

H0

Φ

pr2 s pr2
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by

Φ(g, y) := (t(g), F(g)), Φ−1(x, h) = (F−1(h), s(h)).

Unwinding the definitions yields that these are inverses of each other, and
that they are G-equivariant, is a matter of unwinding the definitions.

We end this subsection by describing the quotient functor F : Bi →
Diffeol. This functor, and parts of the following proposition, have ap-
peared elsewhere in the literature, for instance in [Wan17, Lemma 6.5]. We
give the entire argument for completeness; the clause concerning locally
invertible bibundles is new.

Proposition 2.32. Suppose P : G → H is a principal bibundle. There is a unique
map |P| : |G| → |H| for which the diagram below commutes

P

G0 H0

|G| |H|.

a a′

π π′
|P|

(2.3)

The map |P| is diffeologically smooth. If idG : G → G is the identity bibundle,
then | idG | = id|G|. If Q : H → K is another principal bibundle, then |Q ◦
P| = |Q| ◦ |P|. If P, P′ : G → H are isomorphic, then |P| = |P′|. Hence
F : Bi → Diffeol, which takes an object G ⇒ G0 to |G|, takes an arrow P
to |P|, and takes a 2-arrow α : P → Q to 1|P|, is a well-defined functor of
bicategories.

If P is invertible, then |P| is a diffeomorphism. If P is locally invertible, then
|P| is a local diffeomorphism.

Proof. Because the given diffeology on |G|, which is the quotient diffeology
induced by π, coincides with the quotient diffeology that is induced by
πa, if |P| is well-defined, then |P|πa = π′a′ implies that |P| is smooth and
uniquely determined by a and a′: necessarily, |P| is given by

[x] 7→ [a′(p)], where a(p) = x.

We now check this is well-defined. Suppose g : x 7→ y, and a(p) = x and
a(q) = y. We find an arrow in H taking a′(q) to a′(p). First, s(g) = x =

a(p), so g · p is well-defined. Applying a gives

a(g · p) = t(g) = y = a(q).



2.2 the basics of lie groupoids 18

Because P a−→ G0 is H principal, we can find (unique) arrow h such that
(g · p) · h = q. The fact the action is well-defined means t(h) = a′(g · p),
and this is a′(p) by G-invariance of a′. On the other hand,

a′(q) = a′(g · p · h) = s(h),

so h is the desired arrow.
Now, suppose P : G → H and Q : H → K are principal bibundles, with

left and right anchors a, a′ and b, b′, respectively. Recall that composition
Q ◦ P is given by the diagram

P ×H0 Q/H

P Q

G0 H0 K0

|G| |H| |K|

α β′

a a′ b b′

|P|

|Q◦P|

|Q|

Choose x ∈ G0, then choose p ∈ P such that a(p) = x, then choose q such
that b(q) = a′(p). Then

|Q| ◦ |P|([x]) = Q([a′(p)]) = [b′(q)]

But we can now pick [p, q] ∈ Q ◦ P, where α([p, q]) = x and β′([p, q]) =
b′(q). Then |Q ◦ P|([x]) = [b′(q)] too, as required.

Suppose α : P → Q is an isomorphism of bibundles. Fix a(p) = x, so
that |P|([x]) = [a′(p)]. Then b(α(p)) = x, so |Q|([x]) = [b′(α(p))]. But
b′α = a′, so |Q|([x]) = [a′(p)] = |P|([x]).

If P is invertible, the inverse of |P| is |P−1|. If P is locally invertible,
for x ∈ G0 and y ∈ a′(a−1(x)), take neighbourhoods U of x and V of y
such that P|VU is invertible. By Lemma 2.29 we have the diagram (2.2), and
passing to the quotient yields the diagram

|U| |V|

|G| |H|.

|P|VU |

|P|
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See Lemma 5.16 for the identification of |U| = U/G|U with an open subset
of |G|. The vertical arrows are inclusions, and therefore the top arrow is |P|
restricted to a map |U| → |V|. But the top arrow is also a diffeomorphism
because P|VU is invertible, so we conclude |P| is a local diffeomorphism.

Étale Lie groupoids

An étale Lie groupoid G ⇒ G0 is one which has discrete isotropy groups.
Equivalently, dim G = dim G0. We now define effective étale groupoids.
We will use pseudogroups.

Definition 2.33. A pseudogroup Ψ on a manifold M is a set of transitions
M 99K M (see Definition 2.6) that contains the identity, is closed under
composition, inversion, and restriction to open subsets, and satisfies the
following locality axiom:

If ψ is a transition on M and there exists a cover of its domain
for which υ|U ∈ Ψ for every element U of the cover, then
ψ ∈ Ψ.

A pseudogroup Ψ on M partitions M into orbits { f (x) | ψ ∈ Ψ}. The
intersection of pseudogroups is a pseudogroup. For a set Ψ0 of transitions,
we call the intersection of all pseudogroups containing Ψ0 the pseudogroup
generated by Ψ0.
Remark 2.34. A pseudogroup Ψ on M is generated by a set of transitions
Ψ0 if and only if every ψ ∈ Ψ is locally a composition of elements of ψ0

and their inverses. Precisely, for every x ∈ dom ψ, there are ψi ∈ Ψ0, and
ϵi ∈ {1,−1}, such that germx ψ = germx ψϵ1

1 ◦ · · · ◦ ψϵn
n .

Example 2.35.

• The collection of all transitions from a manifold M to itself is a
pseudogroup, called the Haefliger pseudogroup.

• Given an étale Lie groupoid G ⇒ G0, the collection of local bisec-
tions of G, defined as {t ◦ σ | σ is a local inverse of s}, generates a
pseudogroup on G0, which we denote Ψ(G).

Remark 2.36. Conversely, given a pseudogroup Ψ on M, we form its germ
groupoid Γ(Ψ) ⇒ M. Its arrows are the germs of elements of Ψ. The source
map is s(germx ψ) = x, the target is t(germx ψ) = ψ(x), the multiplication
is germx ψ · germx′ ψ′ = germx′ ψψ′, the unit map is x 7→ germx id, and
the inversion is (germx ψ)−1 = germψ(x) ψ−1. We equip the arrow space
Γ(Ψ) with the smooth structure given by the following atlas. For each
ψ ∈ Ψ and chart r : U → Ω of M with U ⊆ dom ψ, take the chart

{germx ψ | ψ(x) ∈ U} → Ω, given by germx ψ 7→ r(x).
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Now we introduce the effect functor, and we define an effective étale
groupoid.

Definition 2.37. Let G be étale Lie groupoid. Let Ψ(G) be its associated
pseudogroup (see Example 2.35). Let Γ(Ψ(G)) be the its germ groupoid.
The effect functor Eff : G → Γ(Ψ(G)) is identity on G0, and

Eff(g) := germs(g)(t ◦ σ),

where σ a local inverse of s taking s(g) to g. This is a surjective local
diffeomorphism on arrows. An étale Lie groupoid G is effective if Eff is also
injective on arrows. In this case, G is isomorphic to Eff(G) = Γ(Ψ(G)).

The germ groupoid Γ(Ψ) of a pseudogroup is effective. In general, for
an étale Lie groupoid G and for a pseudogroup Ψ, we have the relations

Γ(Ψ(G)) = Eff(G), Ψ(Γ(Ψ)) = Ψ. (2.4)

2.3 the holonomy groupoid of a regular foliation

Fix a regular foliation (M,F ), by which we mean a partition F of M
into connected (weakly-embedded) submanifolds L for which the associ-
ated distribution x 7→ TxL is smooth and involutive. In this section, we
assume familiarity with regular foliations, but note that we cover foli-
ations in greater detail in Chapter 3. A good reference for this section
is [MM03]. Associated to (M,F ) is a distinguished Lie groupoid, the
holonomy groupoid.

Definition 2.38 (Holonomy groupoid). The holonomy groupoid associated
to F is a Lie groupoid Hol ⇒ M, whose arrows x 7→ y are the holonomy
classes of leafwise paths from x to y (see [MM03], Chapter 2.1, for a
definition of holonomy), and multiplication is given by concatenation of
paths.

The two key facts we require about Hol, which we explain below, are:

• it is source-connected;

• it is Morita equivalent to an étale Lie groupoid with countably
generated pseudogroup.

First, we call a Lie groupoid G ⇒ G0 source-connected if the source-fibers
are all connected. As with Lie groups, we can consider the source-connected
identity component G◦ ⇒ G0 of a Lie groupoid. The arrows in G◦ are
those arrows g ∈ G such that g and 1s(g) belong to the same component
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of s−1(s(g)). This is an open source-connected subgroupoid of G (see
[Mei03]). The groupoid Hol is source-connected ([MM03], page 157).

Second, recall that we call a Lie groupoid étale if the source map is a
local diffeomorphism. To each étale Lie groupoid G ⇒ G0, we associate
the pseudogroup Ψ(G) on G0, given by

Ψ(G) := {t ◦ σ | σ is a local section of s, and t ◦ σ is a diffeomorphism}.

We will work with countably generated pseudogroups.

Definition 2.39 (Countably generated pseudogroups). A pseudogroup Ψ
is countably generated if it is generated (see Remark 2.34) by a countable set
of transitions.

We now phrase our second property of Hol as a lemma, but first need a
definition.

Definition 2.40 (Complete transversal). A complete transversal to a codi-
mension q regular foliation F is an immersion from a q-dimensional
submanifold ι : S ↪→ M, such that S is transverse to every leaf it meets,
and it meets every leaf; i.e. dιx(TxS)⊕ Tι(x)L = Tι(x)M, where L is the leaf
about ι(x), and the image of ι meets every leaf at least once.

This differs slightly from the definition in [MM03] (their Example 5.19),
because we do not assume ι to be injective. Therefore, ι is not necessarily
the inclusion map for a submanifold of M. However, we do not need injec-
tivity of ι for the next lemma. Complete transversals to regular foliations
always exist, as we show in the proof below.

Lemma 2.41. For a regular foliation F with complete transversal ι : S ↪→ M,
we may pull back Hol along ι, to get a Lie groupoid HolS ⇒ S. This is Morita
equivalent to Hol. It is also étale. Its associated pseudogroup, which we call the
holonomy pseudogroup of F , is countably generated.

Proof. Assume F has codimension q. By [MM03], Chapter 1.2, fact (i),
we may take a countable foliation atlas {φi : Ui → Rn−q × Rq}, such
that the change-of-coordinates diffeomorphisms have the form φji(x, y) =
(gji(x, y), hji(y)), where hji is a locally-defined diffeomorphism of Rq. An
important consequence of this fact (i) is that we can choose the Ui such
that, whenever Ui meets Uj, there is some other foliation chart (not neces-
sarily in our collection), that contains Ui ∪ Uj. Set Si := φ−1

i ({0} × Rq), an
embedded submanifold of M, and, viewing hji as locally-defined diffeo-
morphism on {0} × Rq, identify hji with the map, also denoted hji,

Si → Sj, x 7→ φ−1
i hji φj(x).
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We only make this definition if Ui meets Uj. In this case, because there is
some foliation chart containing Ui ∪ Uj, the map hji is a diffeomorphism
Si → Sj preserving the plaques of U. Set S :=

⊔
Si, and let Ψ be the pseu-

dogroup (countably) generated by the hji. By construction of holonomy
([MM03], Chapter 2.1), given any leafwise (contained in a leaf) path α from
x ∈ Si to y ∈ Sj, its holonomy HolSj,Si(α) is an element of Ψ.

Equip S with the natural immersion ι : S → M. By construction, this is
a complete transversal to F . The pullback HolS ⇒ S is Morita equivalent
to Hol, and it is étale (see [MM03], page 135, for details). Moreover, we
identify the arrows in HolS with arrows in Hol from S to S. Suppose
t ◦ σ ∈ Ψ(HolS). To show t ◦ σ ∈ Ψ, we may show this is true locally.
Fix x ∈ dom(σ), and say x ∈ Si. Let α be a representative of σ(x), and
say α is a leafwise path from x to y ∈ Sj. Then there exists a smooth
map H : [0, 1]× Si → Sj (perhaps shrinking Si and Sj) such that H(·, x′)
is a leafwise path from x′ to HolSj,Si(α)(x′) ([MM03], page 118). Then,
x′ 7→ [H(·, x′)] is a section of s through [α] at x (we use square brackets
to denote holonomy classes); because s is a local diffeomorphism, this
section is σ. We conclude that, locally at x, t ◦ σ = HolSj,Si(α) ∈ Ψ. So then
Ψ(HolS) ⊆ Ψ. Because Ψ is countably-generated, so is Ψ(HolS).

Many sources (for example, [Mol88]), define the holonomy pseudogroup
to be Ψ above, in which case the holonomy pseudogroup is countably
generated almost by definition. However, this obscures the connection
of the holonomy pseudogroup to basic forms (which we realize through
Propositions 4.7 and 4.8). Furthermore, while the last assertion of Lemma
2.41 is cited without proof in [MM03], Example 5.23 (2), and generally
seems to be an accepted fact, we could not find a detailed argument in the
literature illuminating why Ψ(HolS) = Ψ.



3
S I N G U L A R F O L I AT I O N S
A N D M O L I N O
E Q U I VA L E N C E

A singular foliation is a partition of a manifold into connected subman-
ifolds, called leaves, of perhaps varying dimension, which fit together
smoothly in an appropriate sense. Singular foliations lie beneath many
structures one frequently encounters in geometry: the partition of a mani-
fold into orbits of a connected smooth Lie group action, the partition of a
Poisson manifold into symplectic leaves, and the partition of a manifold
into the maximal integral submanifolds of an involutive distribution are
all singular foliations. In the last example, the leaves of the resulting sin-
gular foliation all have the same dimension, and thus we obtain a regular
foliation. A global version of the Frobenius theorem asserts that every
regular foliation arises in this way.

Theorem 3.1 (Global Frobenius). Let M be a manifold. An involutive distri-
bution ∆ has integral submanifolds, and the partition of a manifold M into the
maximal integral submanifolds is a regular foliation F∆. Conversely, given a
regular foliation F , the associated distribution TF is involutive. The assignments

F 7→ TF , ∆ 7→ F∆

are inverses of each other.

We employ the adjective “global” because in his original paper [Fro77],
Frobenius worked locally, and did not consider foliations; in modern
terms (as opposed to the language of Pfaffian systems used at the time),
Frobenius proved that a regular distribution ∆ has integral submanifolds
if and only if it is involutive. Furthermore, Frobenius was not - and did not
claim to be - the first to prove the result that now bears his name. He was
building from the work of Jacobi [Jac27], who gave sufficient integrability
conditions in a special case, and of Clebsch [Cle66], who expanded Jacobi’s
conditions the general case. Frobenius also singled out the contributions
of Deahna [Dea40], who gave necessary and sufficient conditions for
integrability (cf. Remark 3.21). For more on the history of Frobenius’s
theorem, see the treatments by Hawkins [Haw05] and Samelson [Sam01].

23
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For singular foliations the situation remained unclear for some time.
Hermann [Her62] was the first to give some sufficient conditions for
integrability in terms of Lie subalgebras of vector fields (stated in Example
3.22). Shortly after, Nagano [Nag66] established Frobenius’s theorem holds
in the analytic case. Matsuda [Mat68], and Lobry [Lob70] worked to
extended the sufficient conditions of Hermann, but like Hermann did not
propose integrability conditions on the singular distributions themselves.
Then, in 1973-1974, Stefan [Ste74] and Sussmann [Sus73] independently
published results that, taken together, successfully generalize the global
Frobenius theorem as stated above; the integrability condition on ∆ is that
it is invariant under the flow of any vector field tangent to ∆. In Section
3.1 of this paper, we proceed carefully toward Stefan and Sussmann’s
results, highlighting the independent contributions of both authors. For a
broader perspective on the history of integrability theorems for singular
distributions, see Lavau’s survey [Lav18].

Diffeology was introduced in the 1980s by Souriau, and was therefore
not available to Stefan and Sussmann as they wrote in the early 1970s.
However, Stefan’s work in particular uses many tools that arise naturally
in diffeology, and he draws conclusions that are best interpreted diffeologi-
cally. We emphasize these connections to diffeology throughout Section 3.1,
but highlight here Corollary 3.25 and Proposition 3.26, which imply that
it is equivalent to consider singular foliations, and orbits of D-connected
diffeological groups acting smoothly on M.

In Section 3.2, we contrast two approaches to the transverse geometry
of a singular foliation: one equips the leaf space M/F with the quotient
diffeology, and the other defines a notion of transverse equivalence directly.
We call this Molino transverse equivalence, after Molino, whose notion of
transverse equivalence ([Mol88, Definition 2.1]) for regular foliations this
generalizes. By Proposition 3.43, a Molino transverse equivalence always
induces a diffeomorphism between the leaf spaces, but the converse does
not hold in general; in Example 3.51, we give two regular foliations that
are not Molino transverse equivalent, but which have diffeomorphic leaf
spaces. It is thus a substantive question whether there is a class of singular
foliations for which the diffeology of its leaf space determines its Molino
transverse equivalence class. We give one affirmative answer in Proposition
3.53 in terms of quasifold groupoids, which were introduced in [KM22],
or Chapter 5 of this thesis. This specializes to orbifolds.

Our Molino transverse equivalence is intimately related to Garmendia
and Zambon’s Hausdorff Morita equivalence of singular foliations, defined
in [GZ19]. We note that Garmendia and Zambon begin with a substantially
different notion of singular foliation, which we call an Androulidakis-
Skandalis singular foliation, cf. Definition 3.30. They therefore have a
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different, generally finer, notion of equivalence. Our Molino transverse
equivalence may be viewed as an extension of Garmendia and Zambon’s
Hausdorff Morita equivalence to Stefan singular foliations (Definition 3.6).

Finally, in Section 3.3, we apply our Molino transverse equivalence to
the basic cohomology associated of a singular foliation. This cohomology
was first introduced by Reinhart [Rei59] in the regular case. Our main
result of this section, Corollary 3.59, shows that the basic cohomology is
invariant under Molino transverse equivalence. This is consistent with the
expectation that the basic cohomology depends only on the transverse
geometry of the singular foliation. As a consequence, we see by Proposition
3.62 that if the quotient map π : M → M/F induces an isomorphism π∗ :
H•(M/F ) → H•

b (M,F ), where H•(M/F ) is the cohomology associated
to the diffeological differential forms on M/F , the same is true for all
singular foliations in the Molino transverse equivalence class of (M,F ).
Whether π always induces an isomorphism remains an open question,
which we address in more detail in Chapter 4

We will assume the facts from diffeology and Lie groupoids included
in Chapter 2, but remind the reader that Iglesias-Zemmour’s book [IZ13]
is an excellent source for the former, and Moerdijk and Mrčun’s book
[MM03] and Lerman’s article [Ler10] are excellent sources for the latter.
For a history of the development of singular foliations, see the survey by
Lavau [Lav18].

We will reiterate the structure of this article. In Section 3.1, we give a
careful description of the definition of a singular foliation, and an overview
of the Stefan-Sussmann theorem. We pay special attention to diffeological
considerations. In Section 3.2, we introduce Molino transverse equivalence
of singular foliations, and relate this to the diffeology of the leaf space,
and Morita equivalence of Lie groupoids. Finally, in Section 3.3, we show
that the basic cohomology of a singular foliation is invariant under Molino
transverse equivalence.

3.1 the basics of singular foliations

A singular foliation is a partition of a manifold1 M into connected sub-
manifolds, called leaves, fitting together smoothly in an appropriate sense.
Before we give a definition of singular foliation, however, we must es-
tablish what we mean by “submanifold.” First candidates are immersed
submanifolds.

1 by “manifold,” we mean set equipped with a maximal smooth atlas (smooth structure)
whose induced topology is Hausdorff and second-countable. When required, we may
denote the smooth structure by a letter such as σ, and refer to the manifold as (M, σ).
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Definition 3.2. A subset L of M, together with a manifold structure σL, is
an immersed submanifold of M if the inclusion ι : (L, σL) ↪→ M is an injective
immersion.

Remark 3.3. The smooth structure σL is part of the data of the immersed
submanifold (L, σL). There may be other smooth structures σ′

L on L for
which (L, σ′

L) is immersed, but is not diffeomorphic to (L, σL). For example,
a figure-eight may be immersed in R2 in two different ways. Note the
topology of (L, σL) is generally finer than the subspace topology.

Diffeology provides other candidates for submanifolds, namely diffeo-
logical and weakly-embedded submanifolds.

Definition 3.4. A subset L of M is a diffeological submanifold of M if its
subspace diffeology is a manifold diffeology. Diffeological submanifolds
always carry the manifold structure given by their subspace diffeology. We
call such L a weakly-embedded submanifold if the inclusion i : L ↪→ M is an
immersion.

Remark 3.5. Weakly-embedded submanifolds have unique smooth struc-
tures for which the inclusion is an immersion; they are unambiguously
immersed submanifolds. The topology of a diffeological submanifold is
finer than the subspace topology. Due to a theorem of Joris [Jor82], the cusp
x2 = y3 is a diffeological submanifold of R2 that is not weakly-embedded.
For a detailed discussion, see [KMW22].

Stefan required the leaves of a singular foliation to be weakly-embedded
in his definition from [Ste74].

Definition 3.6. A (Stefan) singular foliation of a smooth manifold M is a
partition F of M into connected, weakly-embedded submanifolds L, called
leaves such that about each x ∈ M, there exists a chart ψ of M for which

(a) ψ is a diffeomorphism V → U × W, where U and W are open
neighbourhoods of the origin in Rk and Rn−k, respectively, and k is
the dimension of the leaf through x;

(b) ψ(x) = (0, 0);

(c) If L is any leaf of F , then ψ(L) = U × ℓ, for some ℓ ⊆ W.

Remark 3.7. If every leaf has the same dimension, we call the foliation
regular. In this case, Stefan’s definition coincides with the usual chart-
based definition of a foliation.

Remark 3.8. In the next section, we will consider the assignment to each x ∈
M the subspace TxL ⊆ Tx M. This is an example of a singular distribution,
and the leaves L are its maximal integral submanifolds (cf. Definitions
3.13, 3.16, and 3.18).
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An attractive feature of this definition is that it is intrinsic to the manifold
M and the partition into leaves L (whose smooth structures are determined
by the smooth structure on M, see Remark 3.5). This is the first intrinsic
definition of singular foliation to appear in the literature. Prior to Stefan,
singular foliations were known only through examples appearing, for
instance, in control theory.

Example 3.9. Given a Lie group G acting smoothly on a manifold M, the
connected components of the G-orbits assemble into a singular foliation.
More generally, the connected components of the orbits of a Lie groupoid
G ⇒ M form a singular foliation of M. Yet more generally, every Lie
algebroid A =⇒ M induces a singular foliation on M. We treat these
examples later in Example 3.22.

The condition that the leaves of F are weakly-embedded submanifolds
seems at first unnecessarily restrictive. A priori, we might gain generality
by only requiring that the leaves are connected immersed submanifolds of
M. Kubarski [Kub90] in 1990 showed that in fact, we gain no generality
from this weaker assumption.

Theorem 3.10 (Kubarski). Suppose M is a smooth manifold, and F is a partition
of M such that

• Each L ∈ F comes equipped with a smooth structure σL for which (L, σL)

is a connected immersed submanifold of M, and

• About each x ∈ M, there is a chart ψ of M satisfying (a) through (c) in
Definition 3.6, where the k in condition (a) is the dimension of the leaf
(L, σL) about x.

Then each L is a weakly-embedded submanifold of M, and consequently, F is a
Stefan singular foliation.

On the other hand, the notion of a diffeological submanifold provides
another potential generalization to Stefan’s definition. We show that again,
we gain no generality under this weaker assumption.

Proposition 3.11. Suppose M is a smooth manifold, and F is a partition of
M into connected, diffeological submanifolds such that about each x ∈ M, there
exists a chart ψ of M satisfying (a) through (c) in Definition 3.6. Then each
L ∈ F is a weakly-embedded submanifold of M, and consequently, F is a Stefan
singular foliation.

Proof. It suffices to show the inclusion ι : L ↪→ M is an immersion. Take
x ∈ L, and fix a chart ψ satisfying (a) through (c) of Definition 3.6. The
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intersection L ∩ V is an open subset of L.2 Consider the diagram below
(slightly abusing notation)

L ∩ V M

U × {0}.

ι

ψ−1

ψ−1

Because the manifold structure on L is given by the subset diffeology
inherited from M, all maps in this diagram are smooth. The map on the
right, ψ−1 : U ×{0} → M, is an immersion, and by the chain rule, so is the
map on the left, ψ−1 : U × {0} → L ∩ V. Because both U × {0} and L ∩ V
are manifolds of dimension dim L, the map on the left, ψ−1 : U × {0} →
L ∩ V, is a diffeomorphism onto its image L0 := ψ−1(U × {0}). Therefore
it is a chart of L. In this chart, the inclusion satisfies

L0 V

U × {0} U × W.

ι

ψψ−1

Therefore ι is locally an inclusion, hence is an immersion.

The Stefan-Sussmann Theorem

Stefan’s definition is ultimately difficult to verify, even when the proposed
foliation should be regular. In the regular case, we instead identify folia-
tions with their associated distributions, and apply the Frobenius theorem.
Stefan [Ste74] and Sussmann [Sus73] extended the Frobenius theorem
simultaneously but independently in 1973-1974 to the singular setting, in
what is now called the Stefan-Sussmann theorem. However, while simi-
lar, their contributions were not identical, and we will take care here to
highlight their separate work.

Stefan worked with singular foliations generated by arrows. These
are simply certain 1-plots of Diffloc(M), the space of diffeomorphisms
between open subsets of M equipped with its functional diffeology (for a
description of this diffeology, see [IZ13]).

Definition 3.12. An arrow on a manifold M is a 1-plot a : U → Diffloc(M),
such that a(0) = id and dom(a(t)) ⊆ dom(a(s)), whenever 0 ≤ |s| ≤ |t|.
We allow for a(t) to be the empty map.

2 recall the topology on L is finer than the subspace topology.
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Given a collection A of arrows, the union of their images,
⋃

a∈A a(U)

generates a pseudogroup (Definition 2.33), which we denote ΨA. Also
associated to A are two smooth singular distributions, by which we mean:

Definition 3.13. A (smooth) singular distribution on a manifold M is a subset
∆ ⊆ TM such that, for every x ∈ M, the set ∆x := {v ∈ ∆ | π(v) = x} is
a vector subspace of Tx M, and for every v ∈ ∆, there is a locally defined
vector field X such that Xπ(v) = v and Xy ∈ ∆y for all y ∈ dom X.

Namely, set

(∆A)x :=
{

d
dt

∣∣∣
t=t0

a(t)(y) | a(t)(y) = x
}

(∆A)x := {dφyv | φ ∈ ΨA and v ∈ (∆A)x and φ(y) = x}.

Stefan [Ste74, Theorem 1] proved:

Theorem 3.14 (Stefan). Given a collection of arrows A on M, the partition F
of M into the orbits of ΨA is a singular foliation, and TxL = (∆A)x for each
x ∈ M, where L is the leaf about x.

Example 3.15. Consider two vector fields on R2,

X :=
∂

∂x
Y := φ(x)

∂

∂y
,

where φ is a smooth, bounded, non-negative, increasing function which
vanishes if and only if x ≤ 0, and φ(x) = 1 if x ≥ 1. Let A consist of
the flows of X and Y. Then ΨA acts transitively on R2: it clearly acts
transitively on x > 0; if x ≤ 0, first flow along X until we enter the region
x > 0, flow along ±Y until we arrive at the required y-coordinate, and
then flow along −X. It follows that (∆A)(x,y) = R2 at all (x, y), and the
only orbit of ΨA is L = R2.

In the setting of Stefan’s Theorem 3.14, the fact that for each x ∈ M,
we have (∆A)x = TxL (for the leaf L about x) means that the singular
distribution ∆A is integrable, in the sense of the next definition below.

Definition 3.16. A singular distribution ∆ is integrable if, at every x ∈ M, it
admits an integral submanifold, which is an immersed submanifold (L, σL)

containing x such that Ty(L, σL) = ∆y for all y ∈ L.

Suppose now that D is a collection of locally defined vector fields on
M inducing a singular distribution ∆, and AD is the collection of plots of
the form t 7→ ΦX(t, ·), where ΦX is the flow of an element of D. We have
∆AD = ∆. Stefan’s theorem implies
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Corollary 3.17. The orbits of ΨAD are integral submanifolds of ∆ if and only if
∆ = ∆.

This corollary characterizes all integral singular distributions ∆ whose
integral submanifolds are the orbits of ΨAD, for some (hence any) col-
lection of locally defined vector fields D spanning ∆. However, assuming
only that ∆ is integrable, it is not obvious from the above statements that
∆ = ∆. We do not know a priori that the integral submanifolds of ∆ are the
orbits of ΨAD. Sussmann [Sus73, Theorem 4.2] showed that nevertheless,
for an integrable singular distribution ∆, we do in fact have ∆ = ∆. He
achieves this as a consequence of his Orbit Theorem [Sus73, Theorem 4.1]),
which we state for completeness.

Definition 3.18. An integral submanifold (L, σL) of ∆ is maximal if it is
connected, and every connected integral submanifold (S, σS) of ∆ which
intersects L is an open subset of L (in its manifold topology).3

Theorem 3.19 (Sussmann’s orbit theorem). Given a singular distribution ∆
and set of locally-defined vector fields D as above, the orbits of ΨAD are maximal
integral submanifolds of ∆.

Combining Stefan and Sussmann’s results yields what is today called
the Stefan-Sussmann theorem.

Theorem 3.20 (Stefan-Sussmann). A singular distribution ∆ is integrable if
and only if ∆ = ∆, in which case its maximal integral submanifolds are leaves of
a singular foliation F such that TxL = ∆x, where L is the leaf through x.

Remark 3.21. Stefan called the condition ∆A = ∆A homogeneity of the set
of arrows A. Sussmann worked with a set D of partially-defined vector
fields spanning a singular distribution ∆, and used the term D-invariance
for the condition ∆ = ∆. We will adopt Stefan’s term “homogeniety.” This
condition is implicit in earlier work by Lobry [Lob70], cf. [Lav18, page 53].

When dim ∆x is constant over M, homogeneity of ∆ is equivalent to
involutivity, and we recover the global Frobenius theorem 3.1 for regular
foliations. In fact, Deahna [Dea40], who provided necessary and sufficient
conditions for integrability of a regular distribution before Frobenius, gave
homogeniety of ∆, and not involutivity, as the sufficient condition, cf.
[Sam01, page 525].

We already remarked that only Sussmann proved maximality of the
integral submanifolds of an integrable ∆. Only Stefan proved the orbits
of ΨA were weakly-embedded submanifolds, and not merely immersed,
and only Stefan showed the orbits (i.e. the maximal integral submanifolds)
assemble into a singular foliation.

3 Equivalently, (L, σL) if, at each point in L, it is maximal if it is maximal with respect to the
inclusion.
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Example 3.22. Let A =⇒ M be a Lie algebroid, with anchor ρ : A → TM.
The image of the anchor, ρ(A), is an integrable singular distribution. In
this case, a maximal integral submanifold of ∆ through x ∈ M coincides
with the set of all points reachable from x via A-paths, which are paths γ

in M for which there exists a path γ̃ in A such that ρ ◦ γ̃ = γ̇.
By passing to its associated Lie algebroid, one finds that the connected

components of the orbits of a Lie groupoid G ⇒ M, and the connected
components of the orbits of a Lie group G acting smoothly on M, assemble
into a singular foliation.

Historically, integrability of ρ(A) follows from a result of Hermann
[Her62] that predates Stefan and Sussmann’s work. Hermann showed that
any locally finitely generated Lie sub-algebra4 of X(M) induces an integrable
singular distribution, and we can show that ρ(A) satisfies this hypothesis.
That the integral submanifolds are maximal, and assemble into a singu-
lar foliation, still requires Stefan’s contribution to the Stefan-Sussmann
theorem.

As a corollary, we can completely describe singular foliations by their
associated singular distributions. This generalizes the Frobenius theorem
as stated in the Introduction.

Corollary 3.23. Given a singular foliation F , the collection TF :=
⋃

x∈M TxL
is an integrable singular distribution. Given an integrable singular distribution
∆, the partition of M into maximal integral submanifolds is a singular foliation,
denoted F∆. The assignments

F 7→ TF , ∆ 7→ F∆

are inverses of each other.

Remark 3.24. We make two comparisons to the regular case. First, homo-
geneity (see Remark 3.21) implies involutivity, but for non-regular singular
distributions, homogeneity is stronger than involutivity. Indeed, the singu-
lar distribution spanned by X and Y in Example 3.15 is involutive, but it
is not integrable. For regular distributions, involutivity and homogeneity
are equivalent.

Second, the maximal integral submanifolds of an integrable regular
distribution may also be described as equivalence classes of the relation:
x ∼ y if there is a path γ from x to y tangent to ∆, i.e. γ̇(t) ∈ ∆γ(t) for all t.
In general, this is not the case for non-regular singular distributions. For
example, consider the singular distribution spanned by the Euler vector
field X := x ∂

∂x + y ∂
∂y on R2. This has maximal integral submanifolds the

4 meaning a Lie subalgebra D of X(M) such that, for every open U ⊆ M, there exist
X1, . . . , Xk ∈ D such that D|U ⊆ C∞(U)span(X1|U , . . . , Xk|U).
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origin {(0, 0)}, and the rays from the origin. However, every two points
can be joined by a path tangent to ∆.

Stefan’s results and diffeology

While Stefan’s Theorem 3.14 is the most cited part of his paper [Ste74],
in the same work he also proved a result about orbits of subgroups
of Diff(M), which has applications to diffeology. In this section, the D-
topology, and in particular D-connectedness of a diffeological space X is
central.5 The D-topology on X is the finest topology for which all the plots
are continuous (Definition 2.4), and its D-connected components coincide
with its (smooth) path-connected components. See Chapters 2 and 5 of
[IZ13] for details.

Stefan proved [Ste74, Theorem 3]:

Corollary 3.25. Let G be a D-connected diffeological subgroup of Diff(M). Then
the G-orbits assemble into a singular foliation of M.

Proof. Let A consist of all plots (paths) a : R → G with a(0) = id. Then A
is a set of arrows. Because G is D-connected, it is path-connected ([IZ13,
Article 5.7]). Thus

⋃
a∈A a(R) = G, and ΨA is the pseudogroup generated

by G, so the result follows from Theorem 3.14.

Conversely, we have:

Proposition 3.26. Every singular foliation of M is a partition of M into orbits
of some D-connected subgroup of Diff(M).

Proof. Fix a singular foliation F . For each x ∈ M, take a collection {Xx}
of compactly supported vector fields whose values at x span TxF . This
is possible because TF is smooth (Definition 3.13, Corollary 3.23), and
M supports bump functions. Let A denote the collection of all plots of
the form t 7→ ΦXx

(t, ·). Then
⋃

a∈A a(R) generates some D-connected
subgroup of Diff(M), and its orbits coincide with the orbits of ΨA, which
are precisely the leaves of F by the Stefan-Sussmann Theorem 3.20.

Remark 3.27. In the proof above, we required a collection of vector fields
which spanned TF . We were not concerned with how many vector fields
were necessary. In 2008 and 2012, respectively, Sussmann [Sus08] and
Drager, Lee, Park, and Richardson [DLPR12] independently showed that
only finitely many are required. Precisely, they showed that given a singu-
lar distribution ∆, there exist finitely many vector fields X1, . . . , Xn such

5 Here the “D” stands for “Diffeology.” In this context, it does not represent some family of
vector fields.
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that ∆x = span{X1
x, . . . , Xn

x} for every x ∈ M. Drager et al. provided some
bounds for n. Note, however, that the collection X1, . . . , Xn does not neces-
sarily generate the sheaf of sections of ∆. In fact, Drager et. al. [DLPR12,
Section 5] give an example of a singular distribution over R whose sheaf
of sections is not finitely generated.

As an immediate of Proposition 3.26, we have:

Corollary 3.28. For a singular foliation F , the group of diffeomorphisms of M
which fix the leaves of F acts transitively on each leaf.

It follows that, for a manifold M, it is equivalent to consider singular
foliations, to consider integrable distributions, and to consider orbits of
D-connected subgroups of Diff(M). Here is one consequence of this fact.

Proposition 3.29. The partition given by a singular foliation F of M satisfies
the frontier condition: if S and L are leaves, and S ∩ L ̸= ∅, then S ⊆ L (here the
closure is taken relative to M).

Proof. Fix a D-connected subgroup G of Diff(M) whose orbits are the
leaves of F . It suffices to show L is G-invariant. Suppose x ∈ L, and let
(xn) be a sequence of points in L which converge (in M) to x. Then for any
g ∈ G, we have g(xn) → g(x), and all the g(xn) are in L, hence g(x) ∈ L.
Since g was arbitrary, this completes the proof.

Androulidakis-Skandalis singular foliations

We view singular foliations as partitions of a manifold into leaves, and have
seen that by the Stefan-Sussmann theorem, this is equivalent to considering
integrable singular distributions. Some authors take a different approach,
and view singular foliations as choices of submodules of vector fields.
For instance, here is the definition given by Androulidakis and Skandalis
[AS09].

Definition 3.30. An Androulidakis-Skandalis singular foliation is a C∞(M)-
submodule D of Xc(M) that is locally finitely generated6 and involutive.

We call these submodules “Androulidakis-Skandalis singular foliations”
to distinguish them from the singular foliations of Definition 3.6, which
are partitions of manifolds into leaves. In the literature, such submod-
ules are often called simply “singular foliations.” The Stefan-Sussmann
Theorem 3.20 implies that the singular distribution associated to an

6 this means that, about every x ∈ M, there is a neighbourhood U and Y1, . . . , Yk ∈ D |U
such that D |U = C∞

c (U)span(Y1, . . . , Yk), where D |U is the C∞(U)-submodule of Xc(U)
generated by all the Y = f X|U , where f ∈ C∞

c (U) and X ∈ D .
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Androulidakis-Skandalis singular foliation is integrable, and accordingly
some authors, e.g. [AZ16], have called Androulidakis-Skandalis singular
foliations “Stefan-Sussmann singular foliations.”

It is not necessary, however, to invoke the Stefan-Sussmann theorem to
deduce integrability of Androulidakis-Skandalis singular foliations: in this
case Hermann’s theorem [Her62] (stated in Example 3.22), which predates
Stefan and Sussmann’s work, implies the same result. Moreover, Hermann
himself used “foliation with singularities” to refer not to a partition of
a manifold into leaves, but to a locally finitely generated involutive Lie
subalgebra of X(M). This positions Hermann as an important, early pro-
ponent of the opinion that a singular foliation of a manifold is a finer
notion than a partition into leaves.

Remark 3.31. As noted, for example, by Garmendia and Zambon [GZ19,
Remark 1.8], and by Wang [Wan17, Remark 2.1.13], it is equivalent to
define an Androulidakis-Skandalis singular foliation as an involutive,
locally finitely generated subsheaf of the sheaf of vector fields on M. This
approach could allow a definition of singular foliations on possibly non-
Hausdorff manifolds, where the submodule and sheaf theoretic notions
no longer coincide, cf. Remark 3.46.

Many different choices of Androulidakis-Skandalis singular foliation
may induce the same singular foliation, as the example below shows.

Example 3.32. Let Dk be generated by xk ∂
∂x . Each Dk induces the Stefan

singular foliation of R with three leaves: x < 0, {0}, and x > 0. However,
no two of the modules Dk are isomorphic.

Every Lie algebroid, hence every Lie groupoid and action of a Lie group
on a manifold, induces an Androulidakis-Skandalis singular foliation. On
the other hand, Androulidakis and Zambon [AZ13, Proposition 1.3] have
described an Androulidakis-Skandalis singular foliation Dcounter of R2 that
is not induced by any Lie algebroid. We do not give the details here, but
note that the underlying Stefan singular foliation is the partition of R2 into
point leaves {(k, 0)} for natural k, and the complement R2 ∖

⋃
k≥1{(k, 0)}.

This underlying Stefan singular foliation is induced by a smooth Lie
group action on R2, namely that generated by vector fields f (x, y) ∂

∂x
and f (x, y) ∂

∂y , where f is a bounded, non-negative function that vanishes
precisely on the point leaves {(k, 0)}. But this Lie group action does not
induce the Androulidakis-Skandalis singular foliation Dcounter.

At time of writing, the following question is open:

Question 3.33. Is every Stefan singular foliation induced by some Androulidakis-
Skandalis singular foliation?

As we see in Example 3.32 above, even if the answer is affirmative, the
choice of Androulidakis-Skandalis singular foliation is not unique. It is
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also not natural, in general: consider the singular foliation F of R whose
leaves are {x} with x ≤ 0, and x > 0. By [DLPR12, Proposition 5.3], the
space of all vector fields tangent to F is not locally finitely generated, and
it is not clear how to choose a “best” vector field tangent to F to use as a
generator of an Androulidakis-Skandalis singular foliation.

3.2 transverse equivalence of singular foliations

Given a singular foliation F of M, the leaf space M/F is naturally a
diffeological space. For convenience, we recall the plots of M/F .

Definition 3.34. A map p : U → M/F , where U is an open subset of
Cartesian space, is a plot of the quotient diffeology of M/F if, about
each r ∈ U, there is an open neighbourhood V or r, and a smooth map
q : V → M, such that p|V = π ◦ q, where π is the quotient map.

The D-topology coincides with the quotient topology [IZ13, Article 2.12].
However, whereas the quotient topology on M/F may be trivial, or lose
information about the singular foliation F , its diffeology is often richer, as
the following examples show.

Example 3.35. Let π : R2 → T2 := R2/Z2 denote the quotient map for
the Z2 action on R2. For irrational α, let Sα be the line in R2 with slope α.
The conjugacy classes of the subgroup π(Sα) of T2 assemble into a regular
foliation of T2. We call the leaf space Tα := T2/π(Sα) an irrational torus.

The quotient topology on Tα is always trivial, but the quotient diffeology
is not: Donato and Iglesias-Zemmour [DI85] proved that Tα

∼= Tβ if and
only if β = a+bα

c+dα , where a, b, c, d ∈ Z and ad − bc = ±1.

Example 3.36. Consider the action of the orthogonal group O(n) on Rn. The
leaves of the induced singular foliation are the orbits of the action, namely
the origin {0} and the concentric spheres. Topologically, the quotient
spaces Rn/O(n) are all homeomorphic to the half-line [0, ∞) with its
subspace topology. But by [IZ13, Exercise 50,51] they are all diffeologically
distinct, and none are diffeologically diffeomorphic to [0, ∞) with its subset
diffeology. For n = 1, we get a diffeological orbifold R/Z2.

We may, therefore, propose the diffeological space M/F as a model for
the transverse geometry of F . In the next sections, we compare this notion
with another model.

Molino Transverse Equivalence

In [Mol88, Definition 2.1], Molino defines a notion of transverse equiva-
lence for regular foliations. In [GZ19], Garmendia and Zambon extended
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this notion to Androulidakis-Skandalis singular foliations, and our def-
inition below is similar to theirs and extends Molino’s. However, due
to the differences between Androulidakis-Skandalis and Stefan singular
foliations outlined in Section 3.1, our definition does not coincide with
Garmendia and Zambon’s.

We need two technical Lemmas first.

Lemma 3.37. Suppose p : M → N is a surjective submersion with connected
fibers, and assume N is connected. Then M is connected.

Proof. Take any continuous function g : M → {0, 1}. Because the fibers of
p are connected, g is constant on the fibers. Therefore, as p is a submersion,
there is a smooth function h : N → {0, 1} such that h ◦ p = g. Since N
is connected, h(N) is a single point; since p is surjective, g(M) = h(N)

is a single point. Therefore every continuous function g : M → {0, 1} is
constant, and we conclude that M is connected.

Lemma 3.38. Suppose p : M → N is a submersion. For every locally defined
vector field Y on N, and every v ∈ Tx M such that dpx(v) = Yp(x), there is a
locally defined vector field X on M such that Xx = v and X is p-related to Y.

Proof. Because p is a submersion, without loss of generality we may as-
sume that p : Rm → Rn is the projection of the first n coordinates. For
v = (v1, . . . , vm) ∈ Tx M, define

Xx′ := (Yp(x′), vn+1, . . . , vm).

Then X is p-related to Y, because dpx′ is the projection of the first n
coordinates, and the condition dpx(v) = Yp(x) writes

(v1, . . . , vn) = Yp(x),

so Xx = v.

Proposition 3.39. Let p : M → N be a surjective submersion with connected
fibers. If ∆ is an integrable singular distribution on N, then (dp)−1(∆) is an
integrable singular distribution on M. If L is a leaf of the singular foliation of
N induced by ∆, then p−1(L) is a leaf of the singular foliation of M induced by
(dp)−1(∆).

Proof. To see that (dp)−1(∆) is a smooth singular distribution, take v ∈
((dp)−1(∆))x. Then dpx(v) ∈ ∆p(x), and since ∆ is smooth, there is some
partially defined vector field Y of N tangent to ∆ with dpx(v) = Yp(x).
By Lemma 3.38, we get a partially defined vector field X of M such that
Xx = v, and dp(X) = Y. This vector field is tangent to (dp)−1(∆), and
passes through v. Hence (dp)−1(∆) is smooth.
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To see that (dp)−1(∆) is integrable, let x ∈ M and let L be the maximal
integral submanifold of ∆ through p(x). Because p is a surjective sub-
mersion, p−1(L) is a weakly-embedded submanifold of M, and for each
x′ ∈ p−1(L),

Tx′(p−1(L)) = (dpx′)
−1(Tp(x′)L) = ((dp)−1(∆))x′ .

The Stefan-Sussmann Theorem 3.20 implies that the maximal integral
submanifolds of (dp)−1(∆) assemble into a singular foliation of M. But
the p−1(L) already partition M into connected (by Lemma 3.37) integral
submanifolds of (dp)−1(∆). Corollary 3.23 lets us conclude that the p−1(L)
are the maximal integral submanifolds of (dp)−1(∆).

In light of Proposition 3.39, we can use the following notation.

Definition 3.40. Given a surjective submersion with connected fibers
p : M → N, and an integrable singular distribution ∆ on N with associated
singular foliation F , let p−1∆ := (dp)−1(∆), and let p−1F denote the
singular foliation associated to p−1∆; its leaves are the sets p−1(L), where
the L are leaves of F . We call p−1∆ and p−1F the pullbacks of ∆ and F .

Using the pullback foliation, we now define Molino transverse equiva-
lence of singular foliations.

Definition 3.41. Two singular foliations, (N0,F0) and (N1,F1), are Molino
transverse equivalent if there exists a singular foliation (M,F ) and surjective
submersions with connected fibers pi : M → Ni such that p−1

i (Fi) = F .
We will write F0 ∼= F1.

Naturally, we must show:

Proposition 3.42. Molino transverse equivalence is an equivalence relation on
singular foliations.

Proof. Reflexivity is witnessed by the identity. Symmetry is clear because
we can reverse the roles of the Ni. For transitivity, build the following
diagram:

M ×p1 p′1
M′

(M,F ) (M′,F ′)

(N0,F0) (N1,F1) (N2,F2).

pr1 pr2

p0 p1 p′1 p′2
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The bottom two rows indicate the assumed Molino transverse equivalences.
Denote the fiber product at the top by M′′. This is a manifold because
p1 is a submersion. The projections are surjective submersions because
the pi and p′i are surjective submersions, thus so too are the compositions
p0 ◦ pr1 and p′2 ◦ pr2. We claim that, moreover, these have connected fibers,
and pull back F0 and F2, respectively, to the same singular foliation of
M′′.

First, in light of Lemma 3.37, it suffices to show, without loss of general-
ity, that pr1 has connected fibers. Let x ∈ M, and take (x, z) and (x, z′) in
M′′. Then z and z′ are in the same fiber of p′1, which is connected, hence
there is a path γ′ joining them in this fiber. Then (x, γ′(t)) is a path in the
fiber of pr1 joining (x, z) and (x, z′), as required.

The second assertion follows from the fact that any leaf L of F has the
form p−1

0 (L0) = p−1
1 (L1), and any leaf L′ of F ′ has the form (p′1)

−1(L′
1) =

(p′2)
−1(L′

2), and from using the usual property of pullbacks that (p0 ◦
pr1)

−1F0 = pr−1
1 p−1

0 F0, etc. This proves that (M′′, (p0 ◦ pr1)
−1(F0)), with

the surjective submersions p0 ◦ pr1 and p′2 ◦ pr2, gives a Molino transverse
equivalence between F0 and F2.

We now relate Molino transverse equivalence and diffeology. One di-
rection is straightforward: a Molino transverse equivalence induces a
diffeological diffeomorphism of the leaf spaces.

Proposition 3.43. Suppose p : M → N is a surjective submersion with con-
nected fibers, and let F be a singular foliation of N. Then the map

φ : N/F → M/p−1F , L 7→ p−1(L)

is a diffeological diffeomorphism. Consequently, if pi : M → Ni witness a Molino
transverse equivalence between Fi, then the map

N0/F0 → N1/F1, L 7→ p1(p−1
0 (L))

is a diffeological diffeomorphism.

Proof. The map φ is well-defined by definition of p−1F (here we use the
fact that p has connected fibers, as in Proposition 3.39), and its inverse is
p−1(L) 7→ L. Both φ and φ−1 fit in the following diagram:

M N

M/p−1(F ) N/F .

p

π1 π2
φ−1

φ
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Because π1 and π2 ◦ p are subductions, by Lemma 2.9 so are φ and φ−1.

Example 3.44. Consider the singular foliations induced by the action of O(n)
on Rn, from Example 3.36. Because the Rn/O(n) are not diffeomorphic
for different n, the singular foliations of Rn are not Molino transversely
equivalent.

The converse is more subtle. Indeed, there exist two regular foliations,
(Ni,Fi), with diffeomorphic leaf spaces, but which are not Molino trans-
verse equivalent. We will see this by detouring through Morita equivalence
of Lie groupoids.

Molino versus Morita equivalence

We saw in Example 3.22 that every Lie groupoid induces a singular folia-
tion on its base manifold. For Lie groupoids, there is a long established
notion of transverse, or weak, equivalence, called Morita equivalence. In this
subsection, we compare the notions of Molino and Morita equivalence.

Proposition 3.45. Let G ⇒ M and H ⇒ N be two source-connected Lie
groupoids with Hausdorff arrow spaces. If G and H are Morita equivalent, then
the singular foliations FG and FH on M and N are Molino transverse equivalent.

Proof. Fix an invertible bibundle P : G → H (see Definition 2.22 for details)

G ⟳ P ⟲ H

M N.

a a′

We claim that this exhibits a Molino transverse equivalence. First, since
G and H are Hausdorff, by [GZ19, Corollary A.7], we may choose P to
be Hausdorff. Both a and a′ are surjective submersions by assumption.
Since G acts freely and transitively on the fibers of a′, the fiber of a′ over
x′0 is diffeomorphic to s−1(x′0) · p0 for any fixed p0 in the fiber, and this
is connected because G is source-connected. Similarly, the fibers of a are
connected.

All that remains is to show the leaves of a−1FG coincide with the
leaves of (a′)−1(FH). Let O be the orbit through a fixed x0 in M. Choose
p0 ∈ P with a(p0) = x0, and let O′ be the orbit of a′(p0) in N. We claim
a−1(O) = (a′)−1(O′).

Letting a(p) ∈ O, we may show a′(p) ∈ O′; the converse direction is
similar. There is an arrow g : x0 → a(p). By G-invariance of a′, both g · p0

and p are in the same fiber of a′. Since the H action is transitive on this
fiber, there is some arrow h with g · p0 · h = p. This action is only possible
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if h is an arrow h : a′(p) → a′(g · p0) = a′(p0). Thus a′(p) and a′(p0) are
in the same orbit O′, as required.

Remark 3.46. The Hausdorff assumption is material, because if G and H are
not Hausdorff, it is not clear that we may choose the invertible bibundle
P above to be Hausdorff. One possible attempt to treat the case of non-
Hausdorff Lie groupoids is to modify the definition of Molino transverse
equivalence to allow for non-Hausdorff manifolds. But doing so begs the
question of how to define singular foliations on non-Hausdorff manifolds,
which we leave for another time. Garmendia and Zambon encounter a
similar problem in the case of Androulidakis-Skandalis singular foliations,
and suggest it may be remedied by viewing Androulidakis-Skandalis
singular foliations as sheaves instead of submodules, as in Remark 3.31;
see [GZ19, Section 4.1].

Given an arbitrary singular foliation (N,F ), it is unknown whether
there is a Lie groupoid G ⇒ N which induces F . Furthermore, it is
possible that two non-Morita equivalent Lie groupoids induce the same
singular foliation.

Example 3.47. Consider the actions of the general linear group GL(n), and
the special linear group SL(n), on Rn. Both induce the same singular folia-
tion of Rn, whose leaves are the origin and its complement. However, the
action groupoids GL(n)⋉ Rn and SL(n)⋉ Rn are not Morita equivalent.
This is because their stabilizer groups at the origin are not isomorphic.

For regular foliations (N,F ), however, we have a distinguished groupoid
inducing the foliation, the holonomy groupoid Hol(F ) (see Chapter 4,
Section 2.3 for its definition and details). It is reasonable to ask whether
Molino transverse equivalence of regular foliations implies their holonomy
groupoids are Morita equivalent, and indeed this is the case:

Proposition 3.48. If two regular foliations are Molino transverse equivalent,
then their holonomy groupoids are Morita equivalent.

This coincides with Proposition 3.30 in Garmendia and Zambon’s paper
[GZ19], whose proof in the regular case is outlined after their Theorem
3.21. We recall that Garmendia and Zambon work with Androulidakis-
Skandalis singular foliations, and not Stefan singular foliations. However,
in the regular case, these notions coincide, so their proof of this statement
works in this setting and we refer the reader there for details.

Remark 3.49. In fact, Garmendia and Zambon prove a stronger statement.
As we discussed in Section 3.1, Androulidakis-Skandalis singular foliations
are not generally induced by any Lie groupoid. However, Androulidakis
and Skandalis in [AS09] constructed an open topological groupoid for
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every Androulidakis-Skandalis singular foliation F , called the holonomy
groupoid of F , which coincides with the usual holonomy groupoid in the
regular case. Garmendia and Zambon proved that, provided the holonomy
groupoids are Hausdorff, they are Morita equivalent (as open topological
groupoids) if and only if the associated singular foliations are what they
call Hausdorff Morita equivalent.

Corollary 3.50. Two regular foliations with Hausdorff holonomy groupoids are
Molino transverse equivalent if and only if their holonomy groupoids are Morita
equivalent.

We are now prepared to illustrate the example alluded to at the end of
Section 3.2, of two regular foliations with diffeomorphic leaf spaces, but
which are not Molino transverse equivalent. This example also appears in
more detail in [KM22], and in Chapter 5 Section 5.4.

Example 3.51. Let h : R → R be a smooth non-negative function that is flat7

at 0 and is positive everywhere else, such that the vector field X := h ∂
∂x is

complete. Let ψ := ΦX
1 denote the time-1 flow of X, and set

ψ̂(x) :=

{
ψ(x) if x ≥ 0

ψ−1(x) if x < 0.

Both ψ and ψ̂ are smooth. By iterating ψ, we get a Z-action on R, and also
one on R2 given by

k · (t, x) := (t + k, ψk(x)).

This action preserves the foliation of R2 by horizontal lines (but not the
leaves themselves), and the action is free and properly discontinuous.
Therefore, passing to the quotient, Mψ := R2/ψ is a manifold and we
have the quotient foliation Fψ. Moreover, Mψ/Fψ is diffeomorphic to
R/ψ. Similarly, we can form Mψ̂/Fψ̂, and this is diffeomorphic to R/ψ̂.
But R/ψ = R/ψ̂, so we have two foliations foliation with diffeologically
diffeomorphic leaf spaces. However, by [KM22, Proposition 7.1], or Sec-
tion 5.4 of this thesis, the étale holonomy groupoids associated to these
foliations are not Morita equivalent. Therefore their holonomy groupoids
are not Morita equivalent, hence by Proposition 3.48, the foliations are not
transverse equivalent.

Diffeology and Molino equivalence for quasifolds

While in general, a diffeological diffeomorphism between the leaf spaces
of singular foliations does not induce a Molino transverse equivalence

7 this means that h and all its derivatives vanish at the point
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(cf. Example 3.51), there is a class of regular foliations for which this
holds. These are regular foliations whose holonomy groupoids are Morita
equivalent to quasifold groupoids, introduced in [KM22].

Definition 3.52. A n-quasifold groupoid is a Lie groupoid G ⇒ M, with
Hausdorff arrow space, such that: for each x ∈ M, there is an open
neighbourhood U of x, a countable group Γ acting affinely on Rn, an open
subset V of Rn, and an isomorphism8 of Lie groupoids G|U → (Γ ⋉ Rn)|V.

Proposition 3.53. Assume (Ni,Fi) are regular foliations, and their holonomy
groupoids Hol(Fi) are each Morita equivalent to effective quasifold groupoids
Gi ⇒ Mi. If the leaf spaces Ni/Fi are diffeologically diffeomorphic, then the
foliations Fi are Molino transverse equivalent.

Proof. Morita equivalent Lie groupoids have diffeomorphic orbit spaces,
therefore the Mi/Gi are diffeomorphic to Ni/Fi, for each i = 0, 1. It
follows from the assumption that the Mi/Gi are diffeomorphic to each
other. Then, because the Gi are effective quasifold groupoids, we use
[KM22, Proposition 5.4] to conclude that the Gi are Morita equivalent.
Therefore the Hol(Fi) are Morita equivalent.

If we show each Hol(Fi) is Hausdorff, we may conclude the proof with
Corollary 3.50. But to be Hausdorff is invariant under Morita equiva-
lence ([MM03, Proposition 5.3], and the Gi are Hausdorff by definition
of quasifold groupoid, hence the holonomy groupoids are Hausdorff, as
required.

Remark 3.54. The assumption that the Gi are effective is unnecessary. Each
Hol(Fi) is Morita equivalent to its étale holonomy groupoid, and these
are effective. To be effective is stable under Morita equivalence ([MM03,
Example 5.21 (2)], hence the Gi are necessarily effective.

In Proposition 3.53, we impose a condition on the holonomy groupoid
Hol(Fi), and not on the foliation itself. There are cases, however, where
we can deduce the holonomy groupoid is Morita equivalent to a quasifold
groupoid directly from properties of the foliation. We end this brief section
with an example.

Example 3.55. A distinguished class of quasifold groupoids are proper
étale groupoids, which are sometimes called orbifold groupoids. Their
local linear models arise as a consequence of the linearization theorem
for proper groupoids, for example see [CS13]; the resulting groups Γ
are the stabilizer subgroups Gx, which are finite. If all of the leaves of
a regular foliation F are compact and have finite holonomy groups, by
the Reeb stability theorem the holonomy groupoid Hol(F ) is proper

8 invertible functor with smooth inverse
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([MM03, Example 5.28 (2)]). Because to be proper is stable under Morita
equivalence ([MM03, Proposition 5.26]), we may apply Proposition 3.53 to
such foliations F .

3.3 basic cohomology of singular foliations

Given a singular foliation (M,F ), we have the associated complex of basic
differential forms. In this section, we will show that Molino transverse
equivalent singular foliations have identical complexes of basic forms,
strengthening the notion that the basic complex captures the transverse
geometry. We will end with a discussion of the comparison between
the complex of basic differential forms, and the complex of diffeological
differential forms on the leaf space.

Definition 3.56. A differential form α ∈ Ω•(M) is F -basic if, for every
vector field X tangent to F , both

ιXα = 0 and LXα = 0.

The first condition says α is horizontal. The second says α is invariant. We
denote the collection of basic differential forms by Ω•

b(M,F ). This is a de-
Rham subcomplex of Ω•(M), with the usual differential. Its cohomology
H•

b (M,F ) is the basic cohomology associated to F .

Example 3.57. If G is a connected Lie group acting smoothly on M, and F is
the associated singular foliation, the F -basic forms are precisely those that
are horizontal and G-invariant. More generally, if G is a source-connected
Lie groupoid, and F is the associated singular foliation, the F -basic forms
are those for which s∗α = t∗α, see [Miy23a, Proposition 5.5].

Proposition 3.58. Suppose p : M → N is a surjective submersion with con-
nected fibers, and that (N,F ) is a singular foliation. Then p∗ is an isomorphism
from Ω•

b(N,F ) to Ω•
b(M, p−1F ).

Proof. Because p is a submersion, p∗ is injective. It remains to show p∗ is
into, and onto. First, let α be an F -basic form on N, and take X tangent to
p−1F . Then

(ιX p∗α)x = αp(x)(p∗Xx, ·) = (ιp∗Xx α)x = 0,

since p∗Xx is tangent to F . As dα is also F -basic, by a similar computation
we have ιX(p∗dα) = 0, so by Cartan’s formula,

LX p∗α = ιX(dp∗α) = ιX(p∗dα) = 0.
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Second, let β be a p−1F -basic form on M. Since p is a surjective sub-
mersion with connected fibers, its fibers form a regular foliation F ′ of M.
Any vector field tangent to these fibers is also tangent to p−1F , so the
p−1F -basic forms are all F ′-basic. In particular, β is F ′-basic. Now, we can
identify N ∼= M/F ′, and we can identify the quotient with p : M → N. By
[Lee13, Exercise 14.9], the pullback p∗ is an isomorphism from Ω•(N) to
Ω•

b(M,F ′). This provides α ∈ Ω•(N) such that p∗α = β.
We now check that α is F -basic. Take Y tangent to F , and fix x ∈ M. By

Lemma 3.38, lift Y to a p-related vector field X about x, which is tangent
to p−1F . Since β is horizontal,

0 = (p∗α)x(X, ·) = αp(x)(Yp(x), p∗·).

But p and p∗ are onto, so we conclude ιYα = 0, and α is horizontal. We
also check that since β is invariant,

p∗(LYα) = LX p∗α = 0.

But p∗ is injective, so LYα = 0, and α is invariant. This completes the
proof.

Corollary 3.59. If two singular foliations are Molino transverse equivalent, then
their complexes of basic forms, hence their basic cohomologies, are isomorphic.

Diffeology provides an alternative approach to using differential forms
to study the transverse geometry of a singular foliation. Every diffeological
space X comes with a de Rham complex of diffeological differential forms,
Ω•(X). When X is a leaf space of a singular foliation (N,F ), we can
directly compare Ω•(N/F ) and Ω•

b(N,F ). The following discussion is
pursued in more detail in Chapter 4, but we give a preliminary treatment
here.

Theorem 3.60. Fix a singular foliation (N,F ). The quotient map π : N →
N/F induces a map of chain complexes π∗ : Ω•(N/F ) → Ω•(N). This is
injective, and its image is contained in the space of F -basic forms. The pullback
π∗ is an isomorphism Ω•(N/F ) → Ω•

b(N,F ) whenever

• the set of points in leaves of dimension k is a diffeological submanifold of N,
for each k, or

• π∗ is an isomorphism when we replace (N,F ) with N>0 (N with the
zero-leaves excised) and the induced singular foliation F>0.

This is the main result of [Miy23a], or of Chapter 4. It implies the
earlier results from Karshon and Watts [KW16] and Watts [Wat22], in the
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case of connected groups and source-connected groupoids, respectively.
For regular foliations, this was proved by Hector, Marcías-Virgós, and
Sanmartín-Carbón in [HMVSC11]. The following question remains open:

Question 3.61. Is π∗ : Ω•(N/F ) → Ω•
b(N,F ) always an isomorphism?

However, Corollary 3.59 lets us show π∗ is an isomorphism for an a
priori larger class of singular foliations than Theorem 3.60.

Proposition 3.62. Suppose (Ni,Fi) are Molino transverse equivalent singular
foliations, and assume that πi : Ni → Ni/Fi induces an isomorphism π∗

i :
Ω•(Ni/Fi) → Ω•

b(Ni,Fi) for i = 0. Then the same holds for i = 1.

Proof. Using Proposition 3.43, create the following commutative pentagon.

M

N0 N1

N0/F0 N1/F1.

p0 p1

π0 π1

φ

All of φ∗, π∗
0 , p∗0 , and p∗1 are isomorphisms of the relevant complexes. Thus

π∗
1 is too.

We could also make the same statement in cohomology.
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A singular foliation F of a manifold M is a partition of M into connected,
weakly-embedded submanifolds, called leaves, of perhaps varying dimen-
sion, satisfying the following smoothness condition: for every x ∈ M
contained in a leaf Lx, there exist locally-defined vector fields Xi about x
such that

• the Xi are tangent to the leaves;

• the Xi
x span TxLx

We then take the complex of basic differential forms to consist of those
α ∈ Ω•(M) such that

ιXα = 0, and LXα = 0, for all X tangent to the leaves.

The set of F -basic forms, denoted Ω•
b(M,F ), is a de Rham subcomplex

of differential forms. We relate this complex to one on the quotient (or
leaf) space M/F . While rarely a smooth manifold (for example, the leaf
space of the irrational flow on the torus is not even Hausdorff), M/F is
naturally a diffeological space; recall that diffeology is defined in Chapter
2. The quotient π : M → M/F is diffeologically smooth, and M/F is
equipped with a de Rham complex of diffeological differential forms,
Ω•(M/F ). Pullback by the quotient induces a one-to-one morphism from
diffeological forms into basic forms. We seek singular foliations for which
the following property holds.

Property (P). The pullback π∗ : Ω•(M/F ) → Ω•
b(M,F ) is onto (hence, an

isomorphism).

Diffeology plays an important role. For example, we prove the foliation
of the torus by an irrational flow has Property (P), and as previously
mentioned its leaf space is not a manifold. More generally, we prove

(i) Regular foliations have Property (P) (Theorem 4.11).

(ii) F has Property (P) if the union of leaves of the same dimension is a
diffeological submanifold (Theorem 4.20).

(iii) F has Property (P) if the induced singular foliation on M ∖ {x |
dim Lx = 0} has Property (P) (Theorem 4.27).

46
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We proved (i) independently, then found Hector, Marcías-Virgós, and
Sanmartín-Carbón [HMVSC11] proved it earlier. We approach this problem
using groupoid techniques. For a groupoid version of Property (P), replace
(M,F ) with a Lie groupoid G ⇒ M; replace M/F with M/G; and take
the basic forms to be α such that s∗α = t∗α. Then, we arrive at (i) by
proving

• Property (P) is a Morita-invariant;

• the holonomy groupoid of F has Property (P) if and only if F does;

• étale groupoids with countably generated pseudogroup (e.g. étale
holonomy groupoids) have Property (P).

Hector et al. deal directly with the action of Haefliger’s holonomy pseu-
dogroup on a complete transversal. Our methods generalize their ap-
proach, and we make explicit some nontrivial correspondences untreated
in [HMVSC11], specifically their Proposition 3.1.

Item (ii) has not appeared in the literature, and extends a few existing
results. In [KW16], Karshon and Watts proved that, given a Lie group G
acting on M, if its identity component G◦ acts properly, then corresponding
action groupoid G◦ ⋉ M ⇒ M has Property (P).

In [Wat22], Watts used [KW16] to prove that proper Lie groupoids
have Property (P). In the source-connected case, we can give another
proof of [KW16] and [Wat22]. It is by now well-established that proper
Lie groupoids are linearizable, in the sense of Definition 4.22. Weinstein
gave the first result of this type in [Wei02], where he showed, under
some extra conditions, that linearizability at fixed points was sufficient
for linearizability at finite type orbits (a term we do not define here).
Zung made the next significant advance in [Zun06], by proving proper Lie
groupoids, again satisfying some extra assumptions, are linearizable at
their fixed points. Crainic and Struchiner collected these various results
in [CS13], and gave a self-contained proof that proper Lie groupoids
are linearizable without qualification, which we state as Theorem 4.25.
By Proposition 4.24, linearizability implies the hypotheses of (ii) hold,
hence the foliation of M by the orbits of G has Property (P). By source-
connectedness, Proposition 4.7 implies this is equivalent to G having
Property (P).

A key feature of the above arguments is that linearizability of a Lie
groupoid is sufficient for Property (P) to hold. Since properness is sufficient
but not necessary for linearizability, our class of groupoids for which
(P) holds is distinct from those in [KW16] and [Wat22]. However, even
linearizability is not necessary for Property (P). Our final result (iii) shows
that the placement of the 0-dimensional leaves does not impact whether F
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has Property (P). For example, every singular foliation of R has Property
(P), and many of these are not linearizable. More generally, given any
singular foliation with Property (P), we may choose any closed subset
C of M and declare its points to be 0-leaves, yielding a new singular
foliation for which Property (P) also holds (by applying (iii), and then
(ii)). This suggests Property (P) holds for many singular foliations. On the
other hand, if the singular foliation has no 0-leaves, and we are not in the
situation to apply (ii), then the results of this paper alone are not powerful
enough to determine whether F has Property (P) directly. As of writing,
we are not aware of any singular foliation for which Property (P) fails. We
leave more discussion for the end of the chapter.

This chapter is structured as follows. In Section 4.1, we prove Theorem
4.11. In Section 4.2, we prove Theorems 4.20 and 4.25. In Section 4.3, we
discuss some examples and future directions for research.

4.1 the regular case

In this section, we prove Theorem 4.11. In building up to this result, we
recite and prove necessary tools relating the basic complex and the notions
of Lie groupoids, Morita equivalence, holonomy pseudogroups, etc. As a
reminder, we assume M is a Hausdorff and second countable manifold.

Definition 4.1 (Basic forms). Fix a singular foliation (M,F ) with associ-
ated singular distribution ∆. A differential form α ∈ Ω•(M) is F -basic if
for every section X ∈ Γloc(∆),

ιXα = 0, and LXα = 0. (4.1)

The first condition says α is horizontal, and the second invariant. Denote
the set of basic forms by Ω•

b(M,F ).

Remark 4.2. Because LXα = ιX(dα) + d(ιXα), any horizontal form is invari-
ant if and only if ιXdα = 0. In other words, α ∈ Ω•

b(M,F ) if and only if
ιXα = 0 and ιXdα = 0 for all X ∈ Γloc(∆). But the interior derivative ιX at
x depends only on Xx. We therefore conclude that to prove α is F -basic,
it suffices to check (4.1) against any set of vector fields spanning ∆. In
particular, given a Lie algebroid (g, ρ), a form is g-basic (i.e. (4.1) holds
for all X ∈ ρ(Γ(g))) if and only if it is basic with respect to the induced
singular foliation.

We could potentially define, for any smooth singular distribution ∆, a
∆-basic form to be one which satisfies (4.1) for all X ∈ Γloc(∆). While there
are no technical problems with this definition, if ∆ is not integrable, then
by Corollary 3.23 there is no associated singular foliation F , and hence no
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related leaf-space. Since our goal is to investigate how basic forms capture
transverse structures, it therefore does not make sense for us to define
basic forms in this generality.

The differential and exterior product of basic forms remain basic, so
Ω•

b(M,F ) is a subcomplex of Ω•(M). In the presence of a Lie groupoid,
there is another complex of “basic” forms.

Definition 4.3 (Basic forms for groupoids). Fix a Lie groupoid G ⇒ M. A
differential form α ∈ Ω•(M) is G-basic if s∗α = t∗α. Denote the de Rham
complex of these forms by Ω•

b(M, G).

For a Lie group G acting on M, there is also a notion of a G-basic form.
This is a form α such that g∗α = α for all g ∈ G, and ιXα for all X tangent to
the orbits of G. However, this is not a fundamentally different notion than
that from Lie groupoids: a form is G-basic if and only if it is G ⋉ M-basic
(Lemma 3.3 in [Wat22]). We relate the complexes of G-basic and FG-basic
forms in Proposition 4.7.

We now work to prove Theorem 4.11, or statement (i) from the Chapter
introduction, namely that for a regular foliation F , the pullback by the
quotient π : M → M/F is an isomorphism π∗ : Ω•(M/F ) → Ω•

b(M,F ).
Another proof can be found in [HMVSC11], but we arrived at this result
independently.

We outline the proof here. First, we use Proposition 4.6 to show the
image of π∗ is contained in the set of F -basic forms, so the question is well-
posed. Then, we invoke Proposition 4.7 to show that the F -basic forms are
exactly the Hol-basic forms, because Hol is a source-connected groupoid
whose orbits are the leaves of F . This reduces the question to whether
π∗ : Ω•(M/F ) → Ω•

b(M, Hol) is onto. Take a complete transversal ι :
S → M to F , and obtain the étale holonomy groupoid HolS ⇒ S, which is
Morita equivalent to Hol ⇒ M by Lemma 2.41. Because of this equivalence,
π∗ is an isomorphism if and only if the pullback by πS : S → S/ HolS
is an isomorphism, by Proposition 4.8 and Corollary 4.9. But HolS has
finitely generated pseudogroup by Lemma 2.41, and this implies π∗

S is an
isomorphism by Lemma 4.10.

Before we prove Proposition 4.6, we need two results from diffeology.
These auxilliary results appear as Articles 6.38 and 6.39 in [IZ13]. See there
for the proofs.

Proposition 4.4. Fix a diffeological space X with relation R, and equip X/R
with the quotient diffeology. The image of π∗ : Ωk(X/R) → Ωk(X) is the set of
k-forms α satisfying either of the following, equivalent conditions

(i) For any two plots p, q : U → X with π ◦ p = π ◦ p, we have α(p) = α(q).
This is our main tool.
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(ii) In the pullback diagram

X ×π X X

X X/R.

pr1

pr2 π

π

we have pr∗1 α = pr∗2 α. In other words, the form α is basic with respect
to the diffeological relation groupoid X ×π X ⇒ X (used in the proof of
Proposition 4.8).

Lemma 4.5. The pullback π∗ : Ωk(X/R) → Ωk(X) is injective.

Now we state and prove the required Proposition.

Proposition 4.6.

(i) For a singular foliation, every pullback of a form on M/F is F -basic.

(ii) For a Lie groupoid, every pullback of a form on M/G is G-basic.

Proof.

(i) Suppose β ∈ Ωk(M/F ), and set α := π∗β. For any X ∈ Γloc(∆),
we must show ιXα = 0 and LXα = 0. By Proposition 4.4, for any
plots p, q : U → M such that π ◦ p = π ◦ q, we have p∗α = q∗α. We
can replace the domain U with any manifold. Thus, let Φ : D → M
denote the flow of X (so D ⊆ R × M is open), and set p := Φ,
and q := pr2, the projection onto M. Since Φt(x) := Φ(t, x) and
pr2(t, x) = x are on the same leaf, Φ∗α = pr∗2 α.

For (t, x) ∈ D, we identify T(t,x)D with R⊕ Tx M. For every collection
v1, . . . , vk ∈ Tx M, at t = 0 we have

(Φ∗α)(0,x)(1 ⊕ v1, v2, . . . , vk) = αx(Xx + v1, v2, . . . , vk)

(pr∗2 α)(0,x)(1 ⊕ v1, v2, . . . , vk) = αx(v1, v2, . . . , vk).

This implies ιXx αx = 0. We also have for each t, at v⃗ = (v1, . . . , vk),

αx (⃗v) = (pr∗2 α)(x,t) (⃗v) = (Φ∗α)(t,x) (⃗v) = ((Φt)∗α)x (⃗v),

hence

0 =
d
dt

∣∣∣
t=0

αx (⃗v) =
d
dt

∣∣∣
t=0

((Φt)∗α)x (⃗v) = (LXα)x (⃗v).

So we conclude both ιXα and LXα vanish.
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(ii) This is Corollary 3.6 in [Wat22].

For this next proposition, we adapt the proof from [HS21], which deals
only with regular foliations.

Proposition 4.7. Let G ⇒ M be a Lie groupoid with associated singular foliation
F . Every G-basic form is F -basic, and every F -basic form is G◦-basic.

Proof. Let (g, ρ) be the Lie algebroid of G, so g = (ker ds)|M and ρ = dt. To
prove a form is F -basic, it suffices to test against vector fields in ρ(Γ(g)).
For a section σ of g, denote the corresponding right-invariant vector field
on G by σ̃. By a basic fact about Lie algebroids (page 122 in [Mei03]), σ̃ is
s-related to 0, and also t-related to ρ(σ). Therefore, for any form α on M,

Lσ̃s∗α = 0, and Lσ̃t∗α = t∗Lρ(σ)α. (4.2)

Take the splitting TG|M = g⊕ TM, which allows us to write

(s∗α)1x(ξ1 + v1, . . . , ξk + vk) = αx(v1, . . . , vk)

(t∗α)1x(ξ1 + v1, . . . , ξk + vk) = αx(ρ(ξ1) + v1, . . . , ρ(ξk) + vk).
(4.3)

• Suppose α is G-basic. Then s∗α = t∗α, and by setting ξi = 0 for i > 1
and w1 = 0 in equation (4.3), we get

αx(0, v2, . . . , vk) = αx(ρ(ξ1), v2, . . . , vk) = (ιρ(ξ1)α)x(v2, . . . , vk).

The left side is always 0, thus ιρ(σ)α = 0. For invariance, by equation
(4.2),

0 = Lσ̃s∗α = Lσ̃t∗α = t∗Lρ(σ)α,

and since t is a submersion, Lρ(σ)α = 0. Therefore α is F -basic.

• Now suppose α is F -basic. The fact ιρ(σ)α = 0 implies

αx(ρ(ξ1) + v1, . . . , ρ(ξk) + vk) = αx(v1, . . . , vk),

and by equation (4.3) we see s∗α = t∗α at points 1x ∈ M. Further-
more, the assumption Lρ(σ)α = 0 combined with equation (4.2) gives

Lσ̃s∗a = 0 = t∗Lρ(σ)α = Lσ̃t∗α.

Therefore s∗α and t∗α are invariant under the flows of the σ̃. These
vector fields span ker ds, an involutive subbundle of TG that foliates
G by the connected components of the source-fibers. In particular, we
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can connect any arrow in the component 1x to 1x by travelling along
the flows of the σ̃. Therefore s∗α = t∗α on the union of connected
components of the identity arrows. This is exactly the arrow space
of G◦ ⇒ M, thus α is G◦-basic.

The following is Proposition 3.9 from [Wat22], but also found as Lemma
5.3.8 in [HS21].

Proposition 4.8. Let G and H be Morita equivalent Lie groupoids, witnessed by
an invertible bibundle P : G → H. There is an isomorphism P∗ : Ω•

b(H0,H) →
Ω•

b(G0, G) defined uniquely by the condition that a∗Rα = a∗LP∗α (where aR and
aL are the anchor maps for the actions).

Proof. The bibundle P : G → H gives the following commutative diagram
(see Definition 2.22).

G ×s aL
P P ×aR t H

G P H

G0 H0

pr1
µL

pr2

µR

pr1

pr2

t

s

aL aR s

t

Let α ∈ Ω•
b(H0,H). The pullback a∗Rα is P ×H0 P-basic (in the sense of

Proposition 4.4 (ii)), because aR ◦ pr1 = aR ◦ pr2, for pri : P ×H0 P → P. As
P → H0 is a principal G-bundle, by Remark 2.18, the Lie groupoid P ×H0 P
is isomorphic to G ⋉ P, so a∗Rα is G ⋉ P-basic.

It is also P ⋊H-basic, because

µ∗
Ra∗Rα = pr∗2 s∗α by commutativity of the diagram

= pr∗2 t∗α because α is H-basic

= pr∗1 a∗Rα by commutativity of the diagram

Exactly like above, we conclude a∗Rα is P ×G0 P-basic. By Proposition 4.4
(ii), this is equivalent to a∗Rα = a∗Lβ, for some β ∈ Ω•(G0). Note that β

is unique because aL is a surjective submersion (for instance, we could
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use Lemma 4.5). We denote P∗α := β, and claim β is G-basic. This is a
computation.

pr∗1 s∗β = pr∗2 a∗Lβ by commutativity of the diagram

= pr∗2 a∗Rα by choice of β

= µ∗
La∗Rα because a∗Rα is G ⋉ P-basic

= µ∗
La∗Lβ by choice of β

= pr∗1 t∗β by commutativity of the diagram.

Because pr1 is a surjective submersion, s∗β = t∗β. Therefore P∗ is well-
defined, and it is evidently a homomorphism of complexes. Its inverse is
(P−1)∗, so it is an isomorphism. This completes the proof.

Corollary 4.9. Assume G and H are Morita equivalent Lie groupoids, and let
πG : G0 → G0/G and πH : H0 → H0/H denote the quotient maps. The
pullback π∗

G surjects onto G-basic forms if and only if π∗
H is onto H-basic forms.

Proof. Take an invertible bibundle P : G → H as in Proposition 4.8. The
map Ψ : H0/H → G0/G defined by πH(y) 7→ πG(aL(a−1

R (y))) is a well-
defined diffeological diffeomorphism by Proposition 2.32. Now assume
π∗

G is onto basic forms, and take α ∈ Ω•
b(M,H). Set β := P∗α. By our

assumption on π∗
G , there is some β ∈ Ω•(G0/G) with π∗

Gβ = β. Then,
because πG ◦ aL = Ψ ◦ πH ◦ aR,

a∗Lβ = a∗Lπ∗
Gβ = a∗R(π

∗
HΨ∗β).

But a∗Lβ = a∗Rα, by definition of β (see the previous proof), and since aR is a
surjective submersion, we get α = π∗

HΨ∗β. In other words, π∗
H also surjects

onto basic forms. For the converse direction, work with (P−1)∗.

Now we have a final, key, lemma.

Lemma 4.10. Let G ⇒ M be an étale Lie groupoid with countably generated
associated pseudogroup Ψ(G). Then the pullback by π : M → M/G is onto
G-basic forms.

Proof. Let α ∈ Ω•
b(M, G). Take p, q : U → M such that π ◦ p = π ◦ q. To

show α is in the image of π∗, by Proposition 4.4 (i) it suffices to show
p∗α = q∗α. First, note that α is Ψ(G)-invariant, since for any f = t ◦ σ ∈
Ψ(G), we have

f ∗α = σ∗t∗α = σ∗s∗α = id∗ α = α.

Say { fi}∞
i=1 generates Ψ(G). For each tuple I := (i1, . . . , iN), define f I :=

fi1 ◦ · · · ◦ fiN , and set CI := {r ∈ U | f I(p(r)) = q(r)}. Each CI is closed in
U, and we claim U ⊆ ⋃

I CI (hence equality holds). Indeed, for any r ∈ U,



4.1 the regular case 54

we have π(p(r)) = π(q(r)), so there is an arrow p(r) 7→ q(r). Taking σ to
be a local section of s such that σ(p(r)) is this arrow, then we can take
f := t ◦ σ ∈ Ψ(G) such that f (p(r)) = q(r). Using our generating family
for Ψ(G), we can write f = f I locally near r for some I, hence r ∈ CI .

By the Baire category theorem,
⋃

I int(CI) is open and dense in U. But
on each int(CI), we have f I ◦ p = q, so by Ψ(G)-invariance of α,

p∗α = p∗ f ∗α = ( f I ◦ p)∗α = q∗α.

As this holds on the open dense subset
⋃

I int(CI), by continuity p∗α = q∗α

on all of U, as required.

We may now give the formal statement and proof of our first main
result.

Theorem 4.11. Suppose (M,F ) is a regular foliation. Equip M and M/F with
their manifold and quotient diffeology, respectively. The quotient map π : M →
M/F is diffeologically smooth, and its pullback restricts to an isomorphism
from diffeological forms on M/F to F -basic forms on M. In other words, π∗ :
Ω•(M/F ) → Ω•

b(M,F ) is an isomorphism (cf. [HMVSC11]).

Recall that we must work with diffeology, because M/F is generally
not a smooth manifold. For instance, the leaf space of the irrational flow
on the torus is not even Hausdorff.

Proof. The pullback π∗ is injective by Lemma 4.5, and maps into basic
forms by Proposition 4.6 (i). It remains is to show π∗ is surjective. The
foliation F is induced by its holonomy groupoid Hol ⇒ M. As Hol is
source-connected, by Proposition 4.7 the F -basic and Hol-basic forms
coincide. Since M/ Hol = M/F , it therefore suffices to show that π∗ is
onto Hol-basic forms.

Fix a complete transversal ι : S → M to F . The restriction HolS ⇒ S
of Hol to S is Morita equivalent to Hol, by Lemma 2.41. Therefore, by
Corollary 4.9, to show π∗ surjects onto Hol-basic forms, we may instead
show the pullback by πS : S → S/ HolS is onto HolS-basic forms. The
groupoid HolS ⇒ S is étale, and its associated pseudogroup is countably
generated, by Lemma 2.41. So, we may apply Lemma 4.10 to complete the
proof.

As mentioned in the Introduction, this result was also proved by Hector
et al. in [HMVSC11], though we only found their work after ours was
completed. In our argument, we have given a complete account of the
correspondence between Ψ(HolS)-invariant forms on S, and basic forms on
M. This correspondence is also used in [HMVSC11], as their Proposition
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3.1, but they do not give a proof. In particular, our argument shows the
role Morita-invariance plays in establishing this correspondence naturally,
and this is not noted in [HMVSC11]. Generally, our techniques provide
us the framework to prove more general facts about the basic complex of
some Lie groupoids; for instance, we end with the following corollary.

Corollary 4.12. If G ⇒ M is a source-connected Lie groupoid Morita equivalent
to an étale groupoid (sometimes called a foliation groupoid), the pullback by
π : M → M/G is an isomorphism onto G-basic forms.

Proof. Because G is Morita equivalent to an étale groupoid, its associated
isotropy groups are discrete (Proposition 5.20 in [MM03]). Therefore the
singular foliation F associated to G is regular, and Theorem 4.11 every
F -basic form is a pullback from the quotient. But the F -basic forms are
exactly the G-basic forms by source-connectedness and Proposition 4.7, so
the pullback must be onto G-basic forms as well.

4.2 the singular case

We now prove Theorems, 4.20, and 4.27, or in other words statements (ii)
and (iii) from the Chapter introduction. We begin by establishing some
terminology, then prove the theorem, and afterwards give a key example.
We finish by extending the techniques in the proof of Theorem 4.20 to
get Theorem 4.27, or statement (iii) in the Introduction, which handles a
broader class of singular foliations, in the sense of Example 4.17.

We use the following notation.

Notation 4.13. Given a singular distribution ∆, we denote by M∗k, for
∗ ∈ {=,≥,>,<,≤, ̸=}, the set M∗k := {x ∈ M | dim ∆x ∗ k}.

Remark 4.14. As a consequence of the definition of a smooth singular
distribution, the map x 7→ dim ∆x is lower semi-continuous, and therefore
the sets M≥k are open in M.

Definition 4.15 (Decomposition by dimension). A singular foliation (M,F )

is decomposed by dimension if the sets M=k, consisting of points in leaves of
dimension k, are diffeological submanifolds of M, perhaps with compo-
nents of varying dimension.

Remark 4.16. An arbitrary singular foliation is not necessarily decomposed
by dimension. For instance, the singular foliation of R whose 0-leaves are
the points of some closed set C, and whose 1-leaves are the components of
R ∖ C, is not decomposed by dimension. By taking products of foliations,
we can generate examples of singular foliations for which M=k is not a
diffeological submanifold, for various k.
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Example 4.17.

• If a foliation consists of leaves of only two dimensions, k1 < k2,
then because M=k2 is open (Remark 4.14), we need only check if
M=k1 is a diffeological submanifold. Examples arising in this way
include those singular foliations induced by: the action of the special
linear group SLn on n × n matrices Mn; the action of the (potentially)
indefinite orthogonal group O(p, q) on Rp+q; and the action of R on
Rn by the flow of the Euler vector field. In all cases, k1 = 0 and M=0

has one member, the origin.

• In Section 4.3, we will see an entire class of singular foliations de-
composed by dimension coming from certain Lie groupoids, namely,
the linearizable (in particular, proper; see Theorem 4.25) ones.

• A Riemannian singular foliation is a singular foliation F of a Rie-
mannian manifold (M, g), such that if a geodesic is perpendicular
to a leaf at one point, it remains perpendicular to all the leaves.
These were introduced by Molino [Mol88]. For a more recent sur-
vey, see [ABT13]. Molino proved that Riemannian singular foliations
are decomposed by dimension, see [Mol88, Chapter 6]. In this set-
ting, Mendes and Radeschi [MR19] also discuss the basic complex,
although they do not use diffeology.

Take an arbitrary singular foliation (M,F ) with associated distribution
∆. For ∗ ∈ {=,≥,>,<,≤, ̸=}, set

F∗k := {L ∈ F | dim L ∗ k}.

Lemma 4.18. If M∗k is a diffeological submanifold of M, then (M∗k,F∗k) is a
singular foliation.

Proof. By the Stefan-Sussmann Theorem 3.20, we may take a collection of
arrows A such that the orbits of ΨA are the leaves of F . Let A′ consist of
the arrows in A restricted to M∗k. Because M∗k is a diffeological submani-
fold, this is a collection of arrows, and so by Stefan’s Theorem 3.14, the
orbits of ΨA′ form a singular foliation of M∗k. But these orbits are exactly
the elements of F∗k, hence F∗k is indeed a singular foliation.

Lemma 4.19. If M∗k is a diffeological submanifold of M, and α ∈ Ω•
b(M,F ),

then α|M∗k is F∗k-basic.

Proof. Take A and A′ as in the previous lemma. Then α is F -invariant,
hence ΨA-invariant. This means α′ := α|M∗k is ΨA′-invariant, hence F∗k-
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invariant. As for horizontal, we must take a slightly pedantic approach.
Denote the inclusions

L M∗k Mι′

ι′′

ι

Both ι′ and ι′′ are smooth immersions, since L is weakly-embedded, but ι

is merely smooth. Suppose v ∈ TxL. We want to show ιι′∗vα′ = 0. Compute

ιι′∗vα′ = α′(ι′∗v, ·) = α(ι∗ι′∗v, ι∗·) = α(ι′′∗v, ι∗·).

But the right side is 0, because α is F -horizontal.

Now we come to the main result.

Theorem 4.20. Suppose the singular foliation (M,F ) is decomposed by dimen-
sion. Equip M and M/F with the manifold and quotient diffeology, respectively.
The quotient map π : M → M/F is diffeologically smooth, and pulling back by
the quotient map is an isomorphism from diffeological forms on M/F to F -basic
forms on M. In other words, π∗ : Ω•(M/F ) → Ω•

b(M,F ) is an isomorphism.

Proof. By Proposition 4.6, π∗ maps into F -basic forms, and by Lemma 4.5,
π∗ is injective. It remains to show π∗ is surjective. For ∗ ∈ {≥,=}, equip
M∗k with the singular foliation F∗k: in the ≥ case, the set M≥k is open
(and this does not require any assumption on F , by Remark 4.14), hence
is a diffeological submanifold; in the = case, we are assuming M=k is a
diffeological submanifold. Fix α ∈ Ω•

b(M,F ). Consider the statement

α|M≥k is the pullback of a form on the quotient M≥k/F≥k. S(k)

Let kmax denote the highest dimension of the leaves of F . If S(kmax) holds,
and if S(k + 1) =⇒ S(k), then S(0) holds, which is what we want to
prove. Now, S(kmax) is equivalent to: there is a form β on M=kmax /F=kmax

such that π∗β = α|M=kmax
. But (M=kmax ,F=kmax) is a regular foliation, and

α|M=kmax
is F=kmax-basic by Lemma 4.19, so S(kmax) holds by Theorem 4.11.

Now assume S(k + 1). We will use Proposition 4.4 (i) to conclude S(k).
Let p, q : U → M≥k be plots such that π ◦ p = π ◦ q. Recall here that M≥k
is open, and M≥k+1 is open in M≥k (equivalently, open in M). Set

A := p−1(M≥k+1) (= q−1(M≥k+1)), which is open in U because p is continuous.

B := p−1(M=k) (= q−1(M=k)).

Then U = A ⊔ B, and by an exercise in point-set topology, U = A ∪ int(B).
We will show α(p) = α(q) first on A, and then on int(B). By continuity,
this yields α(p) = α(q) on A ∪ int(B) = U.
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• For A: The plots p and q restrict to maps p′, q′ : A → M≥k+1, which
are smooth maps between the U-open set A and the M-open set
M≥k+1 because they are restrictions to open sets of the smooth maps
p and q. We have π ◦ p′ = π ◦ q′, and we are assuming S(k + 1).
Therefore by Proposition 4.4 (i),

α|M≥k+1(p′) = α|M≥k+1(q
′), which implies α(p)|A = α(q)|A.

• For int(B): We may assume int(B) is non-empty. Fix r ∈ int(B).
Because the points p(r) and q(r) are on the same leaf, by the Stefan-
Sussmann Theorem 3.20, there is a diffeomorphism ξ : V → V ′ (In
the notation of Section 3.1, ξ ∈ ΨA), from a neighbourhood V of
p(r) to a neighbourhood V ′ of q(r), that preserves the leaves, and
sends p(r) to q(r). Let U′ be an open, connected neighbourhood of r
such that U′ ⊆ int(B) ∩ p−1(V). Define

p′ : U′ → M=k, r′ 7→ ξ(p(r′))

q′ : U′ → M=k, r′ 7→ q(r′).

Since we assume M=k is a diffeological submanifold of M, and p′, q′

are smooth as maps U′ → M, they are smooth maps U′ → M=k. In
particular, they are continuous. As U′ is connected, its images under
p′ and q′ are connected, and must lie in a connected component
of M=k. Because p′(r) = q′(r), in fact both p′ and q′ map into a
single connected component, say M◦

=k, of M=k. By abuse of notation,
denote the restrictions of p′ and q′ to maps U′ → M◦

=k again by p′

and q′. By definition of the subset diffeology on M◦
=k, both p′ and q′

are smooth maps U′ → M◦
=k. Observe that

π(p′(r′)) = π(ξ(p′(r′))) by definition of p′

= π(p′(r′)) because π is ξ-invariant

= π(q′(r′)) because π ◦ p′ = π ◦ q′,

so π ◦ p′ = π ◦ q′.

Therefore, we have a regular foliation (M◦
=k,F=k) (discarding the

leaves of F=k in other connected components), two plots p′, q′ of M◦
=k

with π ◦ p′ = π ◦ q′, and furthermore, by Lemma 4.19, the F=k-basic
form α|M◦

=k
on M◦

=k. By Theorem 4.11, α|M◦
=k

is the pullback of some
form on M◦

=k/F=k. By Proposition 4.4, we get

α|M◦
=k
(p′) = α|M◦

=k
(q′), which implies α(ξ ◦ p)|U′ = α(q)|U′ .
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Because α is F -basic and ξ preserves the leaves, α(ξ ◦ p) = α(p). As
r was arbitrary, we can conclude that α(p)|int(B) = α(q)|int(B).

Therefore, for any two plots p, q of M such that π ◦ p = π ◦ q, we have
proved α(p) = α(q). By Proposition 4.4 (i), α is the pullback of some
diffeological form on M/F .

4.3 examples and next steps

Here we will work out an example amenable to Theorem 4.20, but not
handled by any of the existing results [HMVSC11] (the associated foliation
is not regular), [Wat22], or [KW16] (the action is not proper).

Example 4.21. Fix n. Consider special linear group SLn acting on the n × n
matrices Mn from the left. Denote the quotient diffeological space Mn/ SLn

by X, with quotient map π. Call the determinant map det. We also intro-
duce the map

σ : R → Mn, α 7→ (Aij) where Aij =


α if i = j = 1

1 if i = j ̸= 1

0 otherwise.

Write ι for the composition π ◦ σ. Because det is SLn-invariant, it factors
through π, meaning there exists a map c : X → R making the diagram
below commute:

Mn

R X R
det

π

c ι

σ

The map c is smooth because π is a quotient map, and det is smooth.
The map ι is smooth because σ is a lift. We claim that c∗ : Ω•(R) → Ω•(X)

is an isomorphism.

• Injective: since idR = det ◦ σ = c ◦ ι, then idΩk(R) = id∗
R = ι∗ ◦ c∗, so

c∗ has a left-inverse, and is injective.

• Surjective: for α ∈ Ωk(X), we claim c∗(ι∗α) = α. By Lemma 4.5,
π∗ is injective, so it suffices to show π∗c∗ι∗α = π∗α. First, observe
ι ◦ c ◦ π = π ◦ σ ◦ det, and so we must prove

(π ◦ σ ◦ det)∗α = π∗α. (4.4)

Note that det restricts and descends to an isomorphism GLn / SLn →
R ∖ {0}. Therefore, for A ∈ GLn, both σ(det A) and A are in the
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same SLn-orbit. In particular, (π ◦ σ ◦ det)|GLn = π|GLn , and so (4.4)
holds on the subset GLn of Mn. But GLn is dense in Mn, hence (4.4)
must hold on all of Mn, as required.

We note that the argument given here differs from that in [Miy23a,
Example 5.17]. There, we erroneously assumed that if c∗(ι∗α) and
α coincide on the open dense subset ι(R) of X, then they agree on
X. While it is true that diffeological differential forms are sections
of a bundle over X (see [IZ13, Article 6.50]), the fact X is not Haus-
dorff means two smooth sections of this bundle might agree on an
open dense subset without necessarily coinciding on all of X. The
argument we provide here fixes this error.

The group SLn is connected, and the induced foliation is decomposed
by dimension, by Example 4.17. By Theorem 4.20, we see that π∗ is an
isomorphism. Therefore, det∗ = π∗ ◦ c∗ is an isomorphism from Ω•(R)

to Ω•
b(Mn, SLn). In particular, for example, we have proven that the only

SLn-invariant smooth functions Mn → R are those of the form f ◦ det, for
f ∈ C∞(Mn). Another consequence is that the basic cohomology for the
SLn action is isomorphic to the de Rham cohomology of R.

Example: linearizable Lie groupoids

A rich source of singular foliations that are decomposed by dimension are
those induced by “linearizable” Lie groupoids. By a theorem of Crainic and
Struchiner [CS13], given here as Theorem 4.25, every proper Lie groupoid
is linearizable. These include, for instance, actions of compact Lie groups.

First we review the linearization of a Lie groupoid about an orbit. Our
sources are [CS13] and [Fer15]. Fix a Lie groupoid G ⇒ M, and orbit O
through x ∈ M. We can form the restricted groupoid GO ⇒ O, whose
arrows are those arrows in G which begin (and end) in O, and all the
structure maps are induced from G ⇒ M. This is a Lie groupoid.

Let ν(O) denote the normal bundle over O, and similarly denote ν(GO).
We specify the Lie groupoid ν(GO) ⇒ ν(O) using the short exact sequence
of groupoids:

1 TGO TG ν(GO) 1

0 TO TM ν(O) 0.

Definition 4.22. A Lie groupoid is linearizable at the orbit O if there is an
open neighbourhood U of O ⊆ M and an open neighbourhood V of O ⊆
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ν(O) (viewing O as the image of the zero-section), and an isomorphism
of the Lie groupoids G|U ⇒ U and ν(GO)|V ⇒ V, which is the identity on
GO ⇒ O. A Lie groupoid that is linearizable at every orbit is linearizable.

Remark 4.23. While the above definition is convenient to write, we will
need some different descriptions of the linear model. Recall that we denote
the isotropy Lie group at x by Gx := s−1(x) ∩ t−1(x) (and we do not use
caligraphic font for isotropy groups).

(i) The groupoid GO acts on ν(O) from the left, with anchor π by,

µL(g, [v]) = g · [v] := [dtg(ṽ)] where ṽ ∈ TgG satisfies dsg(ṽ) = v.

The action is well-defined, and yields the associated action groupoid
GO ⋉ ν(O). One can check this is isomorphic to ν(GO), via [ṽg] 7→
(g, [dsgṽ]).

(ii) Consider the principal Gx-bundle t : Px → O. The action µL from (i)
provides a left action of Gx on νxO. Then, we can form the associated
bundles Px ×Gx νxO. This bundle is isomorphic to ν(O) via [k, w] 7→
k · w. Under this identification, we obtain the Lie groupoid GO ⋉
ν(O) ⇒ Px ×Gx νxO, which is isomorphic to ν(GO).

Now we state and prove the assertion that a singular foliation induced
by a linearizable Lie groupoid is decomposed by dimension. Note that this
is implicitly proved for proper groupoids by Posthuma, Tang, and Wang
in [PTW21] (their Proposition 3.4). But because linearizable Lie groupoids
are a key example for us, and we can avoid assuming properness, we give
a self-contained but not fundamentally dissimilar proof.

Proposition 4.24. A singular foliation induced by a linearizable Lie groupoid is
decomposed by dimension.

Proof. Call the Lie groupoid G ⇒ M. Fix an orbit O of G, say its codi-
mension is k (it is convenient to take codimension instead of dimension
here), and fix x ∈ O. By definition of linearizability, there exists an open
neighbourhood U of O in M, an open neighbourhood V of O in ν(O), and
an isomorphism of the Lie groupoids G|U ⇒ U and (GO ⋉ ν(O))|V ⇒ V.
Since the dimension of the orbit about y ∈ U is determined by dim Gy, we
will first relate Gy to Gx.

Say y ∈ U ⊆ M corresponds to v ∈ V ⊆ ν(O). By Remark 4.23 (ii), we
view ν(O) as Px ×Gx νxO. Then there is a unique [k, w] in this associated
bundle such that k · w = v. We claim

the projection GO⋉ ν(O) → GO restricts to a diffeomorphism iso(v) → k stabGx(w)k−1.
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Here iso(v) is the isotropy group at v, i.e. the collection of arrows in the
action groupoid GO ⋉ ν(O) ⇒ ν(O) from v to itself, and stabGx(w) is the
stabilizer of w ∈ ν(O) with respect to the action of Gx on ν(O).

• Well-defined: in the action groupoid GO ⋉ ν(O), the only arrows
with source v are of the form (g, v), because the source map is the
projection of the second coordinate. Also, by definition of the action,
the arrows g and k in G must satisfy

g : π(v) 7→ π(g · v) = π(v)

k : x 7→ π(k · w) = π(v),

Hence k−1gk : x 7→ x, and is an element of Gx. Furthermore

k−1gk · w = k−1g · v = k−1 · v = w,

so k−1gk is in stabGx(w). Therefore g = k(k−1gk)k−1 is in k stabGx(w)k−1,
as required.

• Smooth: the projection is smooth, and we restrict its domain and
codomain to embedded submanifolds, hence the restriction is smooth.

• Inverse: the inverse map g 7→ (g, v) is well-defined because g =

kγk−1 for some γ ∈ stabGx(w), hence

g · v = kγk−1 · v = kγ · w = k · w = v.

It is smooth because it is the restriction to embedded submanifolds
of the inclusion GO → GO ⋉ ν(O).

Therefore, Gy ∼= iso(v) ∼= k stabGx(w)k−1. In particular, dim Gy =

dim stabGx(w); and dim Gy = dim Gx if and only if stabGx(w) is an open
submanifold of Gx that contains the identity. In this case, because stabGx(w)

is a subgroup of Gx, necessarily stabGx(w) ⊇ G◦
x , where G◦

x is the iden-
tity component of Gx. In other words, the set of points w ∈ V ⊆ ν(O)

fixed by G◦
x corresponds exactly to the set of y ∈ U ⊆ M such that

dim Gy = dim Gx.
Denote by (νxO)G◦

x the vector subspace of fixed points of G◦
x , and recall

codim(O) = dim Gx = k. We conclude that the diffeomorphism U → V
from the linearization descends to a bijection U ∩ M=k → V ∩ Px ×Gx

(νxO)G◦
x . The codomain is an embedded submanifold of V, so we may

take these bijections as charts for an atlas of U ∩ M=k. As we choose
different x ∈ M=k, the resulting smooth structures on U ∩ M=k may have
different dimensions. Thus, we can only conclude that each connected (in
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the subspace topology) component of M=k is an embedded manifold. But
this is the requirement to be decomposed by dimension.

Crainic and Struchiner in [CS13] proved that

Theorem 4.25. A proper Lie groupoid G ⇒ M is linearizable.

As alluded in the introduction, earlier work in this direction was done
by Weinstein [Wei02] and Zung [Zun06]. In any case, Theorem 4.25 and
Proposition 4.24 give:

Corollary 4.26. If G ⇒ M is a source-connected linearizable Lie groupoid,
π∗ : Ω•(M/G) → Ω•

b(M, G) is an isomorphism. In particular, this is true for
proper Lie groupoids.

Proof. By Theorem 4.25, proper Lie groupoids are linearizable, hence
the second assertion. Let FG be the singular foliation consisting of the
orbits of linearizable G. By Proposition 4.24, FG is decomposed by di-
mension. Hence by Theorem 4.20, π∗ is an isomorphism Ω•(M/G) =

Ω•(M/FG) → Ω•
b(M,FG). By source-connectedness of G, and Proposi-

tion 4.7, Ω•
b(M,FG) = Ω•

b(M, G), which completes the proof.

The second assertion in the corollary was also proved by Watts [Wat22],
and in fact Watts did not require source-connectedness. However, Watts
relied strongly on properness; he invoked compactness of the isotropy
groups Gx, and then applied his and Karshon’s [KW16] earlier result that
π∗ is an isomorphism whenever G is the action groupoid of a Lie group
action on M with properly acting identity component. This earlier result
also relied on compactness of the isotropy groups, in this case of the
given Lie group. Our argument does not require properness, although
we are still working to adapt the argument for non-source-connected Lie
groupoids.

Beyond decomposition by dimension

To finish, we show that pullback by the quotient map π : M → M/F ,
namely π∗ : Ω•(M/F ) → Ω•

b(M,F ), is an isomorphism for a broader
class of singular foliations.

Theorem 4.27. Suppose the singular foliation (M,F ) is such that the pull-
back by π : M>0 → M>0/F>0 is an isomorphism π∗ : Ω•(M>0/F>0) →
Ω•

b(M>0,F>0). Then the pullback by the quotient π : M → M/F is an isomor-
phism π∗ : Ω•(M/F ) → Ω•

b(M,F ).
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Recalling Remark 4.14, note that M>0 is an open susbet of M, so the
above statement requires no assumption in order to treat M>0 as a mani-
fold with singular foliation F>0.

Proof. This proof uses the same ideas as Theorem 4.20. Letting α ∈
Ω•

b(M,F ), all we need to show is that α comes from the quotient. We
use Proposition 4.4 (i). Let p, q : U → M be plots such that π ◦ p = π ◦ q.
Set

A := p−1(M>0) (= q−1(M>0)), which is open in U

B := p−1(M=0) (= q−1(M=0)).

As before, to show α(p) = α(q), it suffices to show equality on A and
on int(B). For A, this is a direct result of the assumption and the fact
M>0 is open, so that (M>0,F>0) is a singular foliation of a manifold. For
r ∈ int(B), note that π ◦ p(r) = π ◦ q(r) reduces to p(r) = q(r), because
the 0-leaves are just points. Therefore p = q on int(B), and α(p) = α(q) on
int(B) follows immediately.

Here are some singular foliations that fall under the assumptions of
Theorem 4.27.

Example 4.28.

• Every singular foliation with leaves of dimension at most 1. In
this case, the foliation (M>0,F>0) is simply the regular foliation
of M>0 = M=1 by the 1-leaves, hence the pullback by π : M>0 →
M>0/F>0 is an isomorphism by Theorem 4.11. This includes every
singular foliation of R, and any singular foliation induced by any
1-dimensional Lie group action.

• Every singular foliation that is decomposed by dimension. In this
case, the singular foliation (M>0,F>0) is decomposed by dimension,
and then Theorem 4.20 says the pullback by π : M>0 → M>0/F>0

is an isomorphism. Note the collection of singular foliations decom-
posed by dimension is strictly contained in the collection of singular
foliations for which Theorem 4.27 applies, because for instance if
M = R, then M=0 can potentially be any closed set.

• Every singular foliation whose singular leaves (leaves L such that
every neighbourhood of every point contains leaves of a strictly
higher dimension) are only points. In this case (M>0,F>0) is a
disjoint union of open, foliated submanifolds, hence decomposed by
dimension, and the second bullet applies. For instance, we can take
the singular foliation of R2 consisting of horizontal lines on y > 0,
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and points on y ≤ 0. This is not decomposed by dimension, but the
singular leaves are the points on the x-axis, so Theorem 4.27 applies
(note this example also falls under our first bullet).

The first example is particularly interesting, because it suggests that
pullback by the quotient is an isomorphism for a very general class of
singular foliations. However, at this time we do not have a result analogous
to Theorem 4.27 for leaves of dimension k ≥ 1. Therefore, if a singular
foliation F has leaves of dimension at least 1, and is not stratified by
dimension, none of our theorems here readily apply. Locally, we may use
Stefan’s foliation charts from [Ste74] to straighten the leaves of lowest
dimension in a neighbourhood, and then collapse these to return us to a
situation with 0-dimensional leaves. This suggests an induction might be
possible. But even so, this is only a local procedure, and it is not currently
clear how to conclude π∗ is an isomorphism from knowing this is true
locally. At the time of writing, we are not aware of any examples for which
the pullback fails to be an isomorphism.



5
Q UA S I F O L D S

Quasifolds were introduced by Elisa Prato in [Pra99], as a generalization of
manifolds and orbifolds. Whereas manifolds are locally modelled by Carte-
sian spaces,1 and orbifolds are locally modelled by quotients of Cartesian
spaces by finite group actions, quasifolds are locally modelled by quotients
of Cartesian spaces by countable group actions. These spaces often have
very coarse topologies. For example, the irrational tori Tα := R/(Z + αZ)

(for α irrational) have trivial quotient topology. In contrast, when we view
irrational tori as diffeological spaces, Donato and Iglesias-Zemmour [DI85]
proved that Tα and Tβ are diffeomorphic as diffeological spaces if and
only if α and β are related by a fractional linear transformation with inte-
ger coefficients. Diffeological quasifolds, defined by Iglesias-Zemmour and
Prato in [IZP21], are diffeological spaces that are, at each point, locally
diffeomorphic to a quotient space Rn/Γ, for a countable group Γ acting
affinely2 on Rn. Special cases include orbifolds [IKZ10], and irrational tori.
The groups Γ may change from point to point. As diffeological spaces,
diffeological quasifolds inherit a notion of smooth maps and a de Rham
complex of differential forms.

A “higher” approach to orbifolds is to define them as Lie groupoids
that are, at each point, locally isomorphic to the restriction of an action
groupoid Γ ⋉ Rn, for a finite group Γ acting linearly on Rn. We similarly
define a quasifold groupoid to be a Lie groupoid that is, at each point, locally
isomorphic to the restriction of the action groupoid Γ⋉Rn, for a countable
group Γ acting affinely on Rn. The groups Γ may change from point to
point.

Our main result is that the categories of diffeological quasifolds and
quasifold groupoids are equivalent, after restricting to local isomorphisms
and effective quasifold groupoids. This completes and extends earlier
work about orbifolds by Masrour Zoghi and Yael Karshon [Zog10]. We
place quasifold groupoids in the bicategory Bi,3 whose objects are Lie
groupoids, whose arrows are principal bibundles, and whose 2-arrows
are morphisms of bibundles. We introduce the notion of a locally invert-
ible bibundle (Definition 2.30), and the sub-bicategory of effective quasi-

1 Rn for some n.
2 see Remark 5.11

3 using Lerman’s notation in [Ler10]
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fold groupoids QfoldGrpdloc-iso
eff , whose objects are effective quasifold

groupoids, whose arrows are locally invertible bibundles, and whose 2-
arrows are morphisms of bibundles. We place diffeological quasifolds
in the category Diffeol of diffeological spaces, whose objects are diffeo-
logical spaces, and whose arrows are diffeologically smooth maps. We
view this as a bicategory with the identity 2-arrows. We introduce the sub-
bicategory of diffeological quasifolds DiffeolQfoldloc-iso, whose objects
are diffeological quasifolds, whose arrows are local diffeomorphisms, and
with identity 2-arrows.

There is a quotient functor of bicategories F : Bi → Diffeol, that takes
a groupoid to its orbit space. Our main result is Theorem 5.32:

Theorem. The quotient functor F restricts to a functor of bicategories FQuas :
QfoldGrpdloc-iso

eff → DiffeolQfoldloc-iso that is: essentially surjective, surjec-
tive on arrows, and injective on arrows up to 2-isomorphism.

This applies mutatis mutandis to orbifold groupoids and diffeological
orbifolds.

By identifying isomorphic principal bibundle between groupoids, we
form the Hilsum-Skandalis category HS of Lie groupoids, whose objects
are Lie groupoids, and whose arrows are isomorphism classes of principal
bibundles. Restricting to quasifolds, and using the same notation, the
theorem above yields

Corollary. The functor FQuas gives an equivalence of categories between QfoldGrpdloc-iso
eff

(viewed in HS) and DiffeolQfoldloc-iso.

In Iglesias-Zemmour and Prato’s recent work [IZP21], which builds on
[IZL18], the authors define diffeological quasifolds, and associate to each
diffeological quasifold a groupoid, and then a C∗ algebra, that is unique
up to Morita equivalence. Their construction implies that the quotient
functor FQuas is essentially surjective, and is full on isomorphisms. They
do not view their groupoids as Lie groupoids, nor do they introduce the
notion of quasifold groupoids.

Prato originally introduced quasifolds through symplectic geometry
in [Pra01], in order to generalize the Delzant construction. Recent work
involving quasifolds and symplectic geometry includes [BP18], [BP19],
[BPZ19], and [LS19]. We also point the reader to Battaglia and Zaffran’s
work [BZ15], where the authors describe how to realize toric quasifolds as
leaf spaces of a foliation. This viewpoint is relevant to the last part of this
article. Hoffman [Hof20] works with not-necessarily-effective quasifold
groupoids as stacks. Our results can also be written in terms of (effective)
stacks, but we leave this for another paper. In particular, we expect our
results to extend parts of Cabrera, del Hoyo, and Pujals’s investigations
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of the stack associated to a discrete dynamical system [CdHP20]. For orb-
ifolds as diffeological spaces, we already mentioned [IKZ10] and [IZL18].
A thorough comparison of the categories of orbifolds as diffeological
spaces, orbifold groupoids, and orbifolds as Sikorski differential spaces,
can be found in [Wat17].

Each section of this chapter addresses a different component of the
main theorem. In Section 5.1, we introduce diffeological quasifolds. In
Section 5.2, we introduce quasifold groupoids. In the first subsection, we
show that the quotient functor FQuas is essentially surjective. In the second
subsection we show that the quotient functor FQuas is surjective on arrows.
In the third subsection, we show that the quotient functor FQuas is injective
on arrows up to 2-isomorphism. In Section 5.4, we describe two effective
actions of Z on R whose orbits coincide, but whose action groupoids
are not Morita equivalent. Namely, they are not related by an invertible
bibundle. Thus, our results do not extend to arbitrary countable group
actions. Finally, in Section 5.5, we indicate directions for future research.

5.1 diffeological quasifolds

We now define diffeological quasifolds. We use Iglesias-Zemmour and
Prato’s definition from [IZP21]. It is similar to the diffeological orbifolds
introduced by Iglesias-Zemmour, Karshon, and Zadka in [IKZ10].

Definition 5.1 (Diffeological quasifolds). A diffeological n-quasifold is a
second-countable diffeological space X such that, for each x ∈ X, there is
a D-open neighbourhood U of x, a countable subgroup Γ of affine trans-
formations of Rn, an open, Γ-invariant subset V ⊆ Rn, and a diffeological
diffeomorphism (a chart) F : U → V/Γ. Here, V/Γ is equipped with its
quotient diffeology, which coincides with the subset diffeology induced
from Rn/Γ, (cf. Lemma 5.16).

We call such V/Γ a model diffeological quasifold, and we call a collection
{F : U → V/Γ} of diffeomorphisms whose domains U are an open cover
of X a (diffeological quasifold) atlas for X.

Remark 5.2. To be a diffeological quasifold is a local condition: given a
diffeological quasifold X, for every x ∈ X and open neighbourhood U′ of
x, there is an open neighbourhood U of x contained in U′ such that U is
diffeomorphic to a model quasifold V/Γ. Compare to Remark 5.12.

Denoting the quotient by π : Rn → Rn/Γ, no generality is gained
by writing our models as π(V) for arbitrary open subsets V of Rn. See
Lemma 5.16, and compare this to Remark 5.11. Furthermore, no generality
is gained if we assume Γ is merely a countable group acting affinely
on Rn (i.e. if we assume the action homomorphism Γ → Aff(Rn) is not
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necessarily injective). This is because V/Γ = V/(Γ/ ker(Γ)), where ker(Γ)
denotes the subgroup of those γ ∈ Γ that act as the identity. Compare this
to Remark 5.11.

Definition 5.3 (Category of diffeological quasifolds). The category DiffeolQfold
is the subcategory of Diffeol whose objects are diffeological quasifolds
and whose morphisms are smooth maps between them. Restricting mor-
phisms to include only local diffeomorphisms, we get DiffeolQfoldloc-iso.

Example 5.4. The irrational tori are important examples of quasifolds. For an
irrational α ∈ R, the irrational torus Tα is the diffeological quotient space
R/(Z + αZ). Here the group Z + αZ is countable, and acts affinely on R

by addition, hence Tα is a model diffeological quasifold. Iglesias-Zemmour
and Donato in [DI85] prove that Tα

∼= Tβ if and only if α and β are related
by a fractional linear transformation with integer coefficients. On the other
hand, irrational tori are trivial as topological spaces, and thus any two are
homeomorphic. In Example 5.14, we illustrate the groupoid picture.
Example 5.5. If the groups Γ are all finite subgroups of GL(Rn), the cor-
responding quasifold is a diffeological orbifold as defined in [IKZ10]. Its
D-topology need not be Hausdorff. By Palais’ slice theorem [Pal61], the
quotient space of a locally proper Lie group action with finite isotropy
groups is a diffeological orbifold. More generally, the quotient space of a
locally proper Lie groupoid with finite isotropy groups is a diffeological
orbifold, cf. Example 5.15.
Remark 5.6. Our model quasifolds, namely diffeological spaces V/Γ for
countable groups Γ acting affinely on V ⊆ Rn, are the same as in [IZP21],
but differ from Prato’s original models [Pra99]. In [Pra99], Prato mod-
els quasifolds by the topological quotient spaces M/Γ, where M is a
connected, simply-connected manifold, and Γ is a discrete group acting
smoothly, such that the set of points where the action is free is dense,
open, and connected. It is not clear whether these models are equivalent.
Nevertheless, we expect the theory that we develop to work equally well
for Prato’s original quasifolds, because the two key lemmas below still
hold.

The two key lemmas below concern lifting properties of maps into model
quasifolds. The first is a variant of a theorem in Section 3 of [IZP21], which
is similar to Lemma 17 from [IKZ10]. Its proof uses the same technique
found in Lemma 5.8 of [Miy23a] and Proposition 5.4 of [KW16].

Lemma 5.7. Suppose Γ is a countable group acting affinely on Rn, and W is a
connected open subset of Rn, and h : W → Rn is a C1 map preserving Γ-orbits.
Then for some γ ∈ Γ, of the form γ · x = Aγx + bγ,

h(x) = γ · x = Aγx + bγ, for all x ∈ W.
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Before proving this lemma, we state a convenient corollary. Recall that
two smooth functions f , g : M → N between manifolds have the same
germ at x ∈ M if there is a neighbourhood U of x for which f |U = g|U ; we
denote by germx f the equivalence class of functions with the same germ
at x as f .

Corollary 5.8. Suppose Γ is a countable group acting affinely on Rn, and W

is a (not necessarily connected) open subset of Rn, and h : W → Rn is a C1

map preserving Γ-orbits. Then for each x ∈ W, there is some γ ∈ Γ such that
germx h = germx γ.

Proof of Lemma 5.7. For each γ ∈ Γ, set ∆γ := {x ∈ W | h(x) = γ · x},
and denote its interior by ∆◦

γ. Since h preserves Γ-orbits, W =
⋃

Γ ∆γ.
Furthermore, each ∆γ is closed in W, being the pre-image of the diagonal
in W ×W under the continuous map x 7→ (h(x), γ · x). Therefore, as a
consequence of the Baire category theorem,

⋃
Γ ∆◦

γ is dense in W.
The function h is affine when restricted to each ∆◦

γ, so Dh = Aγ on this
subset. Thus,

Dh
(⋃

∆◦
γ

)
= {Aγ | γ ∈ Γ, and ∆◦

γ ̸= ∅}

is discrete. But Dh is continuous, and therefore

Dh
(⋃

∆◦
γ

)
= Dh

(⋃
∆◦

γ

)
= Dh(W)

is discrete. Since W is connected, this set must be a singleton, and Dh = Aγ

for some γ ∈ Γ on all of W. Thus, only the ∆◦
(Aγ,bγ)

are potentially non-
empty.

The difference h − Aγ is continuous on W, and restricts to bγ on each
∆◦
(Aγ,bγ)

. By the exact same argument as before, we conclude that precisely
one ∆◦

(Aγ,bγ)
is non-empty, and the corresponding γ is the desired element

of Γ.

This next lemma appears as a theorem in Section 4 of [IZP21]. It is
similar to Lemma 23 in [IKZ10], where they give a global result for finite
group actions. See also Lemmas 1.6 and 1.7 in [Pra01].

Lemma 5.9. Suppose f : V/Γ → V′/Γ′ is a local diffeomorphism between model
diffeological quasifolds. For every x ∈ V/Γ and every r ∈ x and r′ ∈ f (x), there
is a transition f̃ between open subsets of V and V′ taking r to r′ and lifting f .

Proof. Denote the quotient maps by π and π′, respectively. We first show
there is a local lift taking r to r′. The map f π : V → V′/Γ′ is diffeologically
smooth, and therefore admits a local lift f̃ π about r. Both r′ and f̃ π(r)
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must be in the same orbit (precisely, in f (x)), therefore there is some
γ′ ∈ Γ′ for which γ′ · f̃ π(r) = r′. Then γ′ ◦ f̃ π is the desired local lift of f .
This is illustrated in the following diagram (the dashed arrow indicates
“locally defined”):

(V, r) (V′, f̃ π(r)) (V′, r′)

(V/Γ,x) (V′/Γ′, f (x)).

π

f̃ π

f π
π′

γ′

π′
f

Now fix a local lift f̃ : (V, r) 99K (V′, r′) of f taking r to r′. By assumption
on f , there are open neighbourhoods U of x and U′ of x′, such that
the restriction f : U → U′ is a diffeomorphism. By exactly the same
procedure as above, we may lift f−1 : U′ → U to a locally-defined function
s̃ : (V′, r′) 99K (V, r).

Consider the composition s̃ f̃ , which is defined on some neighbourhood
of r. It preserves Γ-orbits, because both f̃ and s̃ are lifts of f and f−1,
respectively. Therefore, by Corollary 5.8, there is some γ ∈ Γ such that
germr s̃ f̃ = germr γ. In particular, differentiating yields Dγr = Ds̃r′D f̃r,
so D f̃r has a left inverse. An exactly similar argument applied to f̃ s̃ shows
that D f̃r has a right inverse. By the inverse function theorem, we conclude
f̃ restricts to a transition taking r to r′.

5.2 quasifold groupoids

Now we introduce quasifold groupoids. Our definition has not previously
appeared in the literature.

Definition 5.10. A n-quasifold groupoid is a Lie groupoid G ⇒ G0, with
Hausdorff arrow space, such that: for each x ∈ G0, there is an open
neighbourhood U of x, a countable group Γ acting affinely on Rn, an
open subset V of Rn, and an isomorphism of Lie groupoids F : G|U →
(Γ ⋉ Rn)|V. We call a collection A = {F : G|U → (Γ ⋉ Rn)|V} of such Lie
groupoid isomorphisms such that the U cover G0 a (quasifold) atlas for G.
We call a groupoid of the form (Γ ⋉ Rn)|V a model quasifold groupoid.

Remark 5.11. In this definition, we do not assume Γ acts effectively on Rn

(i.e. that the action homomorphism Γ → Aff(Rn) is injective), nor do we
assume that V is Γ-invariant.

Remark 5.12. Like with diffeological quasifolds, our notion of quasifold
groupoid is local, meaning that, for a quasifold groupoid G, for each point
x, and each neighbourhood U′ of x, there is an open neighbourhood U of x
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contained in U′ such that G|U is isomorphic to a model quasifold groupoid
(Γ ⋉ Rn)|V. We do not know if, in general, these models can always be
chosen with V being Γ-invariant. We do know this is the case if all the
groups Γ are finite (meaning the quasifold is an orbifold, cf. Example 5.15).

Definition 5.13. The category QfoldGrpd is the sub-bicategory of Bi
whose objects are quasifold groupoids. Taking only the locally invertible
bibundles as arrows, we get the bicategory QfoldGrpdloc-iso.

Example 5.14. In the setting of Example 5.4, the action groupoids (Z +

αZ)⋉ R for irrational tori are quasifold groupoids. Combining our main
Theorem 5.32 with Iglesias and Donato’s result in [DI85], we recover the
fact that two such action groupoids are Morita equivalent if and only
if α and β are related by a fractional linear transformation with integer
coefficients.

Example 5.15. Taking the groups Γ to be finite subgroups of GL(Rn),
we call the resulting quasifold groupoid an orbifold groupoid. Kozsul’s
slice theorem [Kos53] implies that an étale Lie groupoid is an orbifold
groupoid if and only if it is locally proper.4 For the argument, see [MM03,
Proposition 5.30]. Many authors represent orbifolds by étale, proper Lie
groupoids. In contrast, our orbifold groupoids need not be globally proper.
The weighted non-singular branched manifolds of [McD19], which come
from Kuranishi atlases, provide examples of locally proper Lie groupoids
that are not a priori proper.

To show the quotient functor F : Bi → Diffeol restricts to a functor
QfoldGrpd → DiffeolQfold, we require the following technical lemma.

Lemma 5.16. Fix a Lie groupoid G ⇒ G0 and an open subset U ⊆ G0. In the
following diagram, the bottom inclusion map is a diffeomorphism with its image,
π(U), where π(U) carries the subset diffeology induced from G0/G.

(U, subset diffeol.) G0

(U/G|U , quotient diffeol.) (G0/G, quotient diffeol.).

πU π

In particular, if Γ is a Lie group acting smoothly on a manifold M, and π :
M → M/Γ is the quotient map, and V is an open subset of M, then the quotient
diffeology on π(V) induced from V coincides with the subset diffeology induced
from M/Γ.

4 A Lie groupoid is locally proper if about every x ∈ G0, there is a neighbourhood U such
that G|U is proper.
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For an open subset U ⊆ G0, the above lemma justifies using the notation
|U| to refer unambiguously to the diffeological spaces U/G|U = π(U).

Proof. Fix a map p : U → π(U). Suppose that p is a plot for the quotient
diffeology. Then it locally lifts to smooth maps to U, hence to G0. So it is a
plot of G0/G, hence of π(U) as a subset of G0/G. Now suppose that p is
smooth with respect to the subset diffeology. Then it locally lifts to smooth
maps to G0. Fix r ∈ U. Let V be an open neighbourhood r in U, and let
q : V → G0 be a smooth map such that π ◦ q = p|V. Choose x ∈ U such
that p(r) = π(x). Then π(q(r)) = π(x). Choose an arrow g : q(r) → x.

Because s is a submersion, we may take a section σ of s about q(r) such
that σ(x) = g. Because t is continuous and tσ(x) ∈ U, we may restrict the
domain of σ so that tσ always lands in U. Then tσq, on a sufficiently small
domain, is the required local lift of p.

Proposition 5.17. The orbit space of an n-quasifold groupoid G is a diffeological
n-quasifold: if A = {F : G|U → (Γ ⋉ Rn)|V} is an atlas for G, the induced
maps |A| = {|F| : |U| → V/Γ} form an atlas for |G|.

Proof. Fix an n-quasifold groupoid G, and x ∈ G0. Let F : G|U →
(Γ ⋉ Rn)|V be an element of A such that U contains x. Since F is a Lie
groupoid isomorphism, by Proposition 2.32 it descends to a diffeological
diffeomorphism |F| : |U| → |(Γ ⋉ Rn)|V|. By Lemma 5.16, we find |F| is a
diffeomorphism from an open subset of X about [x], to an open subset of
Rn/Γ. Because G0 is second-countable, so is |G|, so by Definition 5.1, we
conclude |G| is a diffeological n-quasifold.

For the rest of this chapter, we deal with effective quasifold groupoids.
We denote by QfoldGrpdloc-iso

eff the subcategory of QfoldGrpdloc-iso con-
sisting of effective quasifold groupoids.

Corollary 5.18. The quotient functor F restricts to a functor FQuas from QfoldGrpdloc-iso
eff

to DiffeolQfoldloc-iso.

Proof. This is Proposition 5.17 combined with Proposition 2.32.

5.3 an equivalence of categories

From diffeological quasifolds to quasifold groupoids

In this section, we show that the quotient functor FQuas is essentially
surjective. Namely, to a diffeological quasifold X, equipped with an atlas
A, we associate an effective quasifold groupoid Γ(A) whose quotient
F(Γ(A)) is diffeomorphic to X. As the notation suggests, Γ(A) will be a
germ groupoid of a pseudogroup.
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Definition 5.19. Let A = {Fi : Ui → Vi/Γi} be a countable atlas of a
diffeological quasifold X. Let

π :
⊔

Vi →
⊔

Vi/Γi, and F−1 :
⊔

Vi/Γi → X

be the maps induced by πi and F−1
i . Denote

Π := F−1π.

Let Ψ(A) be the pseudogroup of transitions ψ on
⊔
Vi such that Πψ = Π.

Let Γ(A) be the germ groupoid associated to the pseudogroup Ψ(A); see
Remark 2.36. We have

Γ(A) =
⊔
i,j

{germx ψ | ψ ∈ DiffAloc(Vi,Vj), x ∈ dom ψ},

where DiffAloc(Vi,Vj) is the set of transitions ψ : Vi 99K Vj in Ψ(A).

Remark 5.20. For each i, the transitions ψ ∈ DiffAloc(Vi, Vi) are precisely
the transitions of Vi which preserve Γi-orbits. By Corollary 5.8, for each
x ∈ dom ψ, there is some γ ∈ Γi such that germx ψ = germx γ. Therefore
Γ(A)|Vi = {germx γ | x ∈ Vi, γ ∈ Γi}, and Vi/(Γ(A)|Vi) = Vi/Γi.

The groupoid Γ(A) appears in [IZL18] and [IZP21] as a diffeological
groupoid. We show Γ(A) is an effective quasifold groupoid; in particular,
it is Lie and Hausdorff.

Lemma 5.21. For a diffeological quasifold X equipped with countable atlas A,
the Lie groupoid Γ(A) is an effective quasifold groupoid.

Proof. Since Γ(A) is a germ groupoid, it is effective. We show Γ(A) has an
atlas of quasifold charts. Consider a chart F : U → V/Γ in A with V ⊆ Rn

and Γ is a subgroup of Aff(Rn).
By Remark 5.20, elements of Γ(A)|V are precisely the germs of elements

of Γ. We may then consider the surjective map

Γ × V → Γ(A)|V, (γ, x) 7→ germx γ. (5.1)

This is also injective, because for affine transformations, if γ ̸= γ′, then
germx γ ̸= germx γ′.

For fixed γ, the induced map V → Γ(A)|V is simply germ γ, which is a
smooth diffeomorphism. Since Γ is discrete, we conclude the map in (5.1)
is a local diffeomorphism; because it is bijective, it is a diffeomorphism.
Together with the identity on the base, the map (5.1) gives the desired
functor from the model quasifold.
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Now we show Γ(A) is Hausdorff. Take any two distinct elements of
Γ(A). Write them as germx ψ and germx′ ψ′, for ψ : Vi 99K Vj and ψ′ :
Vi′ 99K Vj′ . If i ̸= i′ or j ̸= j′, then ψ and ψ′ have disjoint domains or
codomains. The corresponding subsets of Γ(A) are the desired disjoint
neighbourhoods. Now suppose that i = i′ and j = j′. There are three cases.

Case 1 If x ̸= x′, separate x and x′ by disjoint neighbourhoods U and U′.
The required neighbourhoods are the subsets of Γ(A) corresponding
to ψ|U and ψ′|U′ .

Case 2 If x = x′ but ψ(x) ̸= ψ′(x), take neighbourhoods U and U′ of x such
that ψ(U) and ψ′(U′) are disjoint. The required neighbourhoods are
the subsets of Γ(A) corresponding to ψ|U and ψ′|U′ .

Case 3 If x = x′ and ψ(x) = ψ′(x), then germx(ψ
−1ψ′) is an element of

Γ(A)|Vi , which by Remark 5.20, we can identify with some γ ∈ Γi.
Because germx ψ ̸= germx ψ′, this γ is not the identity. Therefore
germy ψ ̸= germy ψ′ for all y in some small neighbourhood U of x.
The required neighbourhoods are the subsets of Γ(A) corresponding
to ψ|U and ψ′|U.

Thus we have associated to X the effective quasifold groupoid Γ(A).
Now we show that the functor F respects this assignment.

Proposition 5.22. Fix a diffeological quasifold X with countable atlas A, as in
Definition 5.19. In the notation from Definition 5.19, the map Π descends to a
diffeological diffeomorphism |Π| :

⊔
Vi/Γ(A) → X. In particular, F(Γ(A)) ∼=

X.

Proof. The orbits of Γ(A) are the equivalence classes of the relation: x ∼
ψ(x), for some i and j and ψ ∈ DiffAloc(Vi,Vj). Therefore Π descends to the
quotient. By results from diffeology, |Π| is diffeologically smooth. Because
Π is onto, it descends to a surjective map. It remains to show injectivity of
|Π| and smoothness of its inverse.

• |Π| is injective:

Suppose Π(x) = Π(x′), where x ∈ Vi and x′ ∈ Vj. This means
F−1

i πi(x) = F−1
j πj(x′). Applying Fj on both sides, and denoting

Fij := FjF−1
i , we get

Fijπi(x) = πj(x′).

The map Fij is a transition Vi/Γi 99K Vj/Γj. By Lemma 5.9, we can
lift it to a transition ψij : Vi 99K Vj sending x to x′. Therefore x and
x′ are in the same orbit, hence the induced map |Π| is injective.
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• |Π| has an inverse:

The inclusion ι : Vi ↪→
⊔
Vi is smooth, and if x and x′ are in the same

Γi orbit, then ι(x) and ι(x′) are in the same Γ(A) orbit. Therefore
the inclusion descends to a smooth map ι : Vi/Γi → ⊔

Vi/Γ(A).
The composition ιFi : Ui → ι(Vi/Γi) is smooth, and it is the inverse
of the restriction |Π| : ι(Vi/Γi) → Ui. This shows |Π| is a local
diffeomorphism, and since it is bijective, it is a diffeomorphism.

Lifting local diffeomorphisms between diffeological quasifolds

In this section we show that the quotient functor FQuas is surjective on
arrows. In other words, given effective quasifold groupoids G and H, and
a local diffeomorphism f : |G| → |H|, we construct a locally invertible
bibundle P : G → H such that |P| = f . First, we replace the effective
quasifolds G and H with convenient germ groupoids.

Definition 5.23. For an étale Lie groupoid G, define the pseudogroup
DiffG

loc(G0) to consist of all transitions ψ of G0 that preserve G-orbits.
Denote its germ groupoid by

ΓG := Γ(DiffG
loc(G0)).

Note that the pseudogroup Ψ(G) of local bisections of G (see Example
2.35) is a subset of DiffG

loc(G0).

Lemma 5.24. If G is a quasifold groupoid, then Ψ(G) = DiffG
loc(G0), and hence

|G| = |ΓG|.

Proof. Fix ψ ∈ DiffG
loc(G0). It suffices to show that about every x ∈ dom ψ,

there is a neighbourhood on which ψ restricts to an element of DiffG
loc(G0).

Case 1: ψ(x) = x. Choose a quasifold groupoid chart F : G|U → (Γ ⋉ Rn)|V
about x. The (partially defined) map F0ψF−1

0 restricts to a transition
V 99K V about F0(x) that preserves Γ-orbits. By Corollary 5.8, we may
choose γ ∈ Γ such that germF0(x) F0ψF−1

0 = germF0(x) γ. Consider
the partially defined map

σ : U 99K G|U , x′ 7→ F−1(γ, F0(x′)).

This is a section of s, and composing with t yields,

tF−1(γ, F0(x′)) = F−1
0 (γ · F0(x′)) = ψ(x′).

Therefore, near x, we have ψ = tσ ∈ Ψ(G).
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Case 2: ψ(x) ̸= x. Since preserves G-orbits, there exists an arrow g ∈ G
such that g : x → ψ(x). Let σ be a section of s through g. Then
(tσ)−1ψ is an element of DiffG

loc(G0) fixing x. By Case 1, this is in
Ψ(G). Therefore, near x, we have ψ = (tσ)((tσ)−1ψ) ∈ Ψ(G).

Corollary 5.25. By the correspondence (2.4), we see Eff(G) = ΓG. If G is also
effective, then the effect functor is an isomorphism G ∼= Eff(G) = ΓG.

We are almost in the position to show that the quotient functor FQuas is
surjective on arrows. We require one more lemma.

Lemma 5.26. Suppose G and H are effective quasifold groupoids. Assume f :
|G| → |H| is a local diffeomorphism. Denote the quotient maps by

π : G0 → |G| and π′ : H0 → |H|.

Then for every x ∈ G0, and x′ ∈ H0, such that f (π(x)) = π′(x′), there is a
transition φ taking x to x′ that lifts f .

Proof. Take x and x′, and fix quasifold groupoid charts

F : G|U → (Γ ⋉ Rn)|V, F′ : H|U′ → (Γ′ ⋉ Rn)|V′

about x and x′. The partially defined map

|F′| ◦ f ◦ |F−1| : V/Γ 99K V′/Γ′

is a local diffeomorphism taking |F−1|(π(x)) to |F′|(π′(x′)). Therefore, by
Lemma 5.9, this lifts to a transition V 99K V′ taking F0(x) to F′

0(x′). Pre-
composing this transition with F0, and post-composing it with F′

0, yields
the required lift φ of f taking x to x′.

Proposition 5.27. Suppose G and H are effective quasifold groupoids. Assume
f : |G| → |H| is a local diffeomorphism. Then there is a locally invertible bibundle
P : G → H such that |P| = f . If f is a diffeomorphism, then P is invertible.

Proof. Let
π : G0 → |G| and π′ : H0 → |H|

be the quotient maps.
By Corollary 5.25, the effect functor is an isomorphism G ∼= ΓG, where

ΓG is the germ groupoid of the pseudogroup consisting of transitions on
G0 preserving G-orbits (Definition 5.23). We similarly have H ∼= ΓH . Since
the effect functor descends to the identity on the orbit space, it suffices to
give a locally invertible bibundle P : ΓG → ΓH lifting f .
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Set

Q := {germx φ | φ is a transition G0 99K H0 lifting f },

with its manifold structure given by the charts germx φ 7→ x (cf. Re-
mark 2.36). We introduce a left action of ΓH on Q along the anchor
a′ : germx φ 7→ φ(x) by

germφ(x) ψ′ · germx φ := germx ψ′φ.

We introduce a right action of ΓG on Q along the anchor a : germx φ 7→ x
by

germx φ · germψ−1(x) ψ := germψ−1(x) φψ.

Both actions are smooth because multiplication of germs is smooth. In a
diagram, we have

ΓH ⟳ Q ⟲ ΓG

H0 G0.

a′ a

Both a and a′ are submersions (in fact, they are local diffeomorphisms). The
anchor a′ is ΓG-invariant, and a is ΓH-invariant, and the actions commute.
Therefore Q : ΓH → ΓG is a bibundle. We will prove that

• Q a−→ G0 is left ΓH-principal;

• For every x0 ∈ G0 and y0 ∈ a′(a−1(x0)), there are neighbourhoods U
of x0 and V of y0 such that Q|UV : ΓH |V → ΓG|U is invertible.

It immediately follows from these claims that swapping the actions of ΓG

and ΓH, as in Example 2.21, yields a locally invertible bibundle P : ΓG →
ΓH, which still has total space Q. Because the elements of Q are germs of
lifts of f , the bibundle P descends to f .

We prove the first item. Let x0 ∈ G0, and fix a transition φ0 : G0 99K H0

defined near x0 lifting f . Denote the domain of φ0 by U and set U′ :=
φ0(U). Assume U is small enough so that the restriction f : |U| → |U′| is
a diffeomorphism. The map σ defined by

σ : U → Q, x 7→ germx φ0

is a smooth section of s. Now set

Φ : a−1(U) → ΓH ×s a′σ U, germx φ 7→ (germφ0(x) φφ−1
0 , x). (5.2)
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This is well-defined because φφ−1
0 is a transition on H0 preserving H-orbits:

by choice of U, we have the commutative diagram

U U′ φ(U)

|U| |U′|,

πa

φ0

φ

π′
b

φ−1
0

π′
c

f

f−1

(where we use the subscripts on the quotient maps to distinguish them),
and therefore

π′
c φφ−1

0 = f πa φ−1
0 = f f−1π′

b = π′
b.

The map Φ has an inverse given by

ΓH ×s a′σ U → a−1(U), (germφ0(x) ψ′, x) 7→ germx ψ′φ0.

This is well-defined because ψ′ preserves H-orbits, so ψ′φ0 remains a
transition lifting f . Both Φ and its inverse are smooth because locally
only the base-points of the germs vary (smoothly) as x moves through U.
Noting that Φ is ΓH-equivariant, and fits into the diagram

ΓH ×s a′σ U a−1(U)

U,

pr2

Φ

a

we conclude that Q a−→ G0 is left ΓH-principal.
We now prove the second item. Choose x0 ∈ G0, and y0 ∈ a′(a−1(x0)).

Using Lemma 5.26, fix a transition φ0 : G0 99K H0 defined near x0 lifting f ,
so that y0 = a′(germx0

φ0). Reusing the notation above, denote the domain
of φ0 by U, and set U′ := φ0(U). Assume U is small enough so that the
restriction f : |U| → |U′| is a diffeomorphism. We claim

ΓH |U′ ⟳ Q|UU′ ⟲ ΓG|U

U′ U.

a′ a
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is an invertible bibundle (in fact, we show that the bundles on both sides
are globally trivializable).

To show Q|UU′
a−→ U is left ΓH |U′-principal, define a section σ of s by

σ : U → Q|UU′ , x 7→ germx φ0,

and set

Φ : Q|UU′ → ΓH |U′ ×s a′σ U, germx φ 7→ (germφ0(x) φφ−1
0 , x).

The section σ and map Φ trivialize the bundle in the same way they gave
a local trivialization for Q a−→ G0, and for brevity we will not repeat the
details here.

To show Q|UU′
a′−→ U′ is right ΓG|U-principal, define a section σ of a′ by

σ : U′ → Q|UU′ y 7→ germφ−1
0 (y) φ0,

and set

Φ : Q|UU′ → U′ ×aσ t ΓG|U , germx φ 7→ (φ(y), germy φ−1
0 φ).

The map Φ is well-defined, because φ−1
0 φ preserves G-orbits: by choice of

U, we have the commutative diagram

dom φ U U′

|dom φ| |U| |U′|,

πa

φ

πb

φ0

π′
c

φ−1
0

f

f−1

so on dom φ ⊆ U,

πb φ−1
0 φ = f−1π′

c φ = f−1 f πa = πa.

The inclusion dom φ ⊆ U follows from the assumption that germx φ ∈
Q|UU′ . Note that if we were trying to show Q a′−→ H0 is right ΓG-principal
(and hence Q is invertible), this is the step where we could fail. In this
setting, the domain of φ need not be inside of U, and so f−1 f need not
fix elements of |dom φ|. On the other hand, if f is a diffeomorphism, then
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f−1 f is always the identity, and the proof would proceed without issue.
The inverse of Φ is given by

U′ ×aσ t ΓG|U → Q|UU′ , (x′, germψ−1(φ−1
0 (x′)) ψ) 7→ germψ−1(φ−1

0 (x′)) φ0ψ.

This is well-defined because ψ preserves G-orbits, so φ0ψ remains a transi-
tion lifting f . Both Φ and its inverse are smooth because locally only the
base-points of the germs vary (smoothly) as y moves through U′. Finally,
Φ is ΓG|U-equivariant, and fits into the diagram

G|UU′ U′ ×aσ t ΓG|U

U′,

Φ

a′ pr1

so we conclude that Q|UU′
a′−→ U′ is right ΓG|U-principal.

We will exhibit this proposition in two examples: the case of a diffeomor-
phism between model quasifolds, and more specifically diffeomorphisms
between irrational tori.

Example 5.28. Suppose that G := Γ ⋉ Rn and H := Γ′ ⋉ Rn are model
quasifold groupoids, and that f : Rn/Γ → Rn/Γ′ is a diffeomorphism.
From the proof of Proposition 5.27,

P := {germx φ | φ is a transition on Rn lifting f }

is an invertible bibundle between the action groupoids G and H. By
Example 2.24, P is simultaneously a Γ and Γ′-principal bundle. The Γ and
Γ′ actions on P are

γ · germx φ := germx φ ◦ γ−1 and (germx φ) · γ′ := germx(γ
′)−1 ◦ φ,

and the bundle projections are a : germx φ 7→ x and a′ : germx φ 7→ φ(x),
respectively. Because P a−→ Rn is a principal right Γ′-bundle, and Rn is
simply-connected, a admits a global (trivializing) section. By definition
of the manifold structure on P, a global section of a is necessarily of the
form x 7→ germx φ0, where φ0 is a diffeomorphism of Rn lifting f . Then
y 7→ germφ−1

0 (y) φ0 is a global section of a′.
Under the trivializations induced by these sections, we find that the

map
λ : Γ → Γ′, γ 7→ φ0 ◦ γ ◦ φ−1

0 (5.3)
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(where we interpret Γ ⊆ Aff(Rn) to define the composition) is a well-
defined group isomorphism, and the diffeomorphism φ0 : Rn → Rn

intertwines the actions with respect to λ. In other words,

(λ, φ0) : G → H

is a Lie groupoid isomorphism. Therefore, the following are equivalent:

• Rn/Γ and Rn/Γ′ are isomorphic;

• G and H are Morita equivalent;

• G and H are isomorphic, and some isomorphism has the form (λ, φ0)

as above.

We note that [CdHP20, Lemma 3.2] shows that any smooth functor
Γ ⋉ Rn → Γ′ ⋉ Rn is of the form (λ, φ), where λ : Γ → Γ′ is a group
homomorphism and φ is a smooth λ-equivariant map.

Example 5.29. Let us now specialize the previous example to the case
of irrational tori (cf. Examples 5.4 and 5.14). Thus Γ := Z + αZ, and
Γ′ := Z + βZ, and they act on R by translation. By the previous example,
a diffeomorphism f : Tα → Tβ lifts to a diffeomorphism φ0 : R →
R, and this diffeomorphism is equivariant with respect to the group
isomorphism λ defined by (5.3). Any isomorphism Γ → Γ′ has the form(

a b
c d

)
∈ GL(2; Z), where(

a b
c d

)
(m + αn) := am + bn + β(cm + dn).

By equivariance of φ0, we have that for any m + αn,

φ0(m + αn) = φ0(0) + am + bn + β(cm + dn)

= φ0(0) + (a + βc)
(

m +
b + βd
a + βc

n
)

.

In particular, if we choose mi + αni → 0, then by continuity

φ0(0) = lim
i→∞

φ0(mi + αni) = φ0(0) + (a + βc) lim
i→∞

(
mi +

b + βd
a + βc

ni

)
,

and the limit on the right vanishes if and only if

b + βd
a + βc

= α. (5.4)
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Conversely, if (5.4) holds for
(

a b
c d

)
∈ GL(2; Z), then the map φ0(x) :=

(a + βc)x descends to a diffeomorphism |φ| : Tα → Tβ.
We conclude that α and β are conjugate modulo GL(2; Z) if and only if

any of the following equivalent conditions hold:

• Tα and Tβ are diffeomorphic;

• (Z + αZ)⋉ R and (Z + βZ)⋉ R are Morita equivalent;

• (Z + αZ)⋉ R and (Z + βZ)⋉ R are isomorphic along an isomor-
phism of the form (λ, φ0).

The first equivalence reproduces Donato and Iglesias-Zemmour’s result in
[DI85], the second is our Proposition 5.27, and the last can also be found,
in a slightly different form, in Cabrera, del Hoyo, and Pujal’s work on
discrete dynamics [CdHP20, Proposition 9.1]

Local diffeomorphisms have essentially unique lifts

In this section, we show that the quotient functor FQuas is injective on
arrows, up to 2-isomorphism. In other words, for two locally invertible
bibundles P, Q : G → H between effective quasifold groupoids that
descend to the same map |P| = |Q| : |G| → |H|, we give an isomorphism
of bibundles P ∼= Q. We begin with the case of functors.

Lemma 5.30. Suppose G, H are effective quasifold groupoids, and F, K : G → H
are smooth functors that induce the same map |F| = |K| : |G| → |H|. If |F|
(hence |K|) is a local diffeomorphism, then there is a smooth natural transformation
F → K.

Proof. Being effective quasifold groupoids, by Corollary 5.25 the effect
functor Eff gives an isomorphism G ∼= Eff(G) = ΓG and H ∼= Eff(H) = ΓH

(see Definition 5.23 for ΓG and ΓH). Then, to find a smooth natural trans-
formation F =⇒ K, it suffices to find a smooth natural transformation
Eff−1 F Eff =⇒ Eff−1 K Eff. So without loss of generality, assume that
F, K : ΓG → ΓH are two smooth functors that induce the same map
|G| → |H|.

Because F, K : G0 → H0 both lift the local diffeomorphism |F| = |K|,
they are also local diffeomorphisms; this is a consequence of Corllary 5.8
and Lemma 5.9. Define

α : G0 → ΓH, α(x) := germF(x) Kσ,

where
σ is a local inverse of F sending F(x) to x. (5.5)
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Because F is a local diffeomorphism, the germ of σ is uniquely defined by
condition (5.5), so α is well-defined. Fixing x and its attendant σ, the map
Kσ is a smooth map defined on a neighbourhood of F(x), and it preserves
ΓH-orbits. Indeed, denoting the quotient maps for G and H by π and π′,
respectively,

π′Kσ = π′Fσ = π′ near x,

where π′K = π′F by the assumption that F and K descend to the same
map on the quotient. Thus α(x) ∈ ΓH . We claim that α is a smooth natural
transformation F =⇒ K.

To see α is smooth, note that if σ satisfies (5.5) at x0, then it also satisfies
(5.5) for all x near x0, so for such x we have α(x) = germF(x) Kσ with the
same σ. For α to be a natural transformation, we require that α(x0) is an
arrow from F(x) to G(x), and that the following commutes for all arrows
germx ψ ∈ ΓG:

F(x) K(x)

F(ϕ(x)) K(ψ(x)).

α(x)

F(germx ψ) K(germx ψ)

α(ψ(x))

(5.6)

By the definition of α(x), its source is F(x), and its target is KσF(x), which
is K(x) by condition (5.5). As for the diagram (5.6), fix germx ψ. We use
the fact that there is some ψ′

F ∈ DiffH
loc(H0) such that for all x̃ near x,

F(germx̃ ψ) = germF(x̃) ψ′
F.

This is a consequence of the assumption that F is a smooth functor, and
that each open subset of ΓH is of the form {germx̃ ψ′ | ψ′ ∈ DiffH

loc(H0)}.
Note that it follows that Fψ = ψ′

FF near x. We similarly have ψ′
K, with

Kψ = ψ′
KK near x.

Then

K(germx ψ) · α(x) = germK(x) ψ′
K · germF(x) Kσ

= germF(x) ψ′
KKσ

= germF(x) Kψσ,

and for the local inverse σ′ of F taking F(ψ(x)) to ψ(x),

α(ψ(x)) · F(germx ψ) = germF(ψ(x)) Kσ′ · germF(x) ψ′
F

= germF(x) Kσ′ψ′
F.
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Now, near x, we have KψσF = Kψ, because σF is the identity near x.
Similarly, near x,

Kσ′ψ′
FF = Kσ′Fψ = Kψ,

because σ′F is the identity near ψ(x). We therefore have

germx KψσF = germx Kψ,= germx Kσ′ψ′
FF,

and because F is a local diffeomorphism, we conclude germF(x) Kψσ =

germF(x) Kσ′ψ′
F. Thus (5.6) commutes, and the proof is complete.

Now we handle the general case.

Proposition 5.31. Suppose P, Q : G → H are principal bibundles between
effective quasifold groupoids that descend to the same map |P| = |Q| : |G| → |H|,
and that |P| is a local diffeomorphism. Then P and Q are isomorphic bibundles.

Proof. Choose an open cover {Ui} of G0 such that for each i, the right
anchors of P and Q admit sections defined on Ui. This is possible because
the anchor maps are submersions. Denoting the inclusion ι :

⊔
Ui → G0,

by [Ler10, Lemma 3.37] there are functors F, K : ι∗G → H such that

P ◦ ⟨ι⟩ is isomorphic to ⟨F⟩, and

Q ◦ ⟨ι⟩ is isomorphic to ⟨K⟩,

where ⟨ι⟩, ⟨F⟩, and ⟨K⟩ are the corresponding principal bibundles, as in
Example 2.27. Since ⟨ι⟩ is invertible, it suffices to show ⟨F⟩ ∼= ⟨K⟩. But ι∗G
is also an effective quasifold groupoid, and F, K are two smooth functors
that induce the same map of quotient spaces, namely |P| ◦ |⟨ι⟩| = |Q| ◦ |⟨ι⟩|.
By Lemma 5.30 and Example 2.27, we find ⟨F⟩ ∼= ⟨K⟩.

This proposition proves that the quotient functor FQuas on effective
quasifold groupoids is injective on arrows, up to 2-isomorphism. We
gather our results in the main theorem.

Theorem 5.32. Let QfoldGrpdloc-iso
eff be the bicategory whose objects are effective

quasifold groupoids, whose arrows are locally invertible bibundles, and whose 2-
arrows are morphisms of bibundles. Let
DiffeolQfoldloc-iso be the bicategory whose objects are diffeological quasifolds,
whose arrows are local diffeomorphisms, and whose 2-arrows are trivial. Then
the quotient functor FQuas : QfoldGrpdloc-iso

eff → DiffeolQfoldloc-iso, which is
well defined by Corollary 5.18, is essentially surjective, is surjective on arrows,
and injective on arrows up to 2-isomorphism.

Proof.
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• It is essentially surjective: given a diffeological quasifold X, take
an atlas A. Then Γ(A) is an effective quasifold groupoid with orbit
space diffeomorphic to X by Proposition 5.22.

• It is surjective on arrows: given a local diffeomorphism f : |G| → |H|,
where G and H are effective quasifold groupoids, we get a locally
invertible bibundle P : G → H such that |P| = f from Proposition
5.27.

• It injective on arrows up to 2-isomorphism: if P, Q : G → H are
locally invertible bibundles between effective quasifold groupoids
that induce the same map on the orbit spaces, then P ∼= Q by
Proposition 5.31.

Moving to the Hilsum-Skandalis category HS (see Remark 2.26) lets us
phrase this result more succinctly.

Corollary 5.33. The quotient functor, from the category whose objects are effective
quasifold groupoids, and whose arrows are isomorphism classes of locally invertible
bibundles, to the category whose objects are diffeological quasifolds, and whose
arrows are local diffeomorphisms, is an equivalence of categories.

Denote by QfoldGrpd[loc-iso]
eff the subcategory of HS induced by QfoldGrpdloc-iso

eff

. Corollary 5.33 resolves the question of gluing morphisms in QfoldGrpd[loc-iso]
eff .

This is a question because in HS, morphisms generally do not glue, i.e.
if P and Q are principal bibundles between Lie groupoids G and H, and
there is an open cover {Ui} of G0 such that P|Ui

∼= Q|Ui for all i, it does
not follow that P ∼= Q. For examples, see [Ler10, Lemma 3.41] or [HM04,
page 2491]. However, for quasifolds:

Corollary 5.34. If P and Q are locally invertible bibundles between effective
quasifold groupoids G and H, and there is an open cover {Ui} of G0 such that
P|Ui

∼= Q|Ui for all i, then P ∼= Q.

Proof. For each i, denote the inclusion Ui → G0 by ιUi . By Lemma 2.29 and
Proposition 2.32,

|P|Ui | = |P ◦ ⟨ιUi⟩| = |P| ◦ |⟨ιUi⟩| = |P|||Ui |.

The assumption P|Ui
∼= Q|Ui implies that |P|||Ui | = |Q|||Ui |. Since the |Ui|

cover |G0|, and since diffeologically smooth maps are local, this means
|P| = |Q|. By Corollary 5.33, we conclude that P ∼= Q.
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5.4 a non-example

By Theorem 5.32, given two quasifold groupoids G and H, a diffeomor-
phism |G| → |H| lifts to a Morita equivalence of G and H. In this last
section, we describe a non-example where this lifting property fails. Fix a
smooth function h : R → R that is flat at 0 and positive everywhere else,
and such that the vector field

ξ := h
∂

∂x

is complete. For example, we can take

h(x) :=

{
e−

1
x2 if x ̸= 0

0 if x = 0.

The time-one flow of ξ is a diffeomorphism ψ : R → R such that

• its jet at 0 coincides with the jet at 0 of the identity map, and

• ψ(R>0) = R>0 and ψ(R<0) = R<0.

The inverse ψ−1 : R → R has the same properties. So does

ψ̂(x) :=

{
ψ(x) if x ≥ 0

ψ−1(x) if x < 0.

Let G be a copy of Z, with action on R generated by ψ. Let H be a copy of
Z, with action on R generated by ψ̂. Then G and H have the same orbits,
so

R/G = R/H =: R/∼.

Proposition 5.35. The identity map on R/∼ does not lift to a biprincipal
bibundle between the action groupoids G ⋉R and H ⋉R. Moreover, these action
groupoids are not Morita equivalent.

Proof. For a contradiction, suppose these groupoids are Morita equivalent.
By Example 2.24, an invertible bibundle P : G ⋉ R → R ⋊ H (we can view
the H action as a right action because H is abelian) is given by the diagram

G ⟳ P ⟲ H

G ⟳ R R ⟲ H,

a a′

where a is a principal H-bundle, and is G-equivariant, and a′ is a principal
G-bundle, and is H-equivariant, and the G and H actions on P commute.
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Because they are bundles over R, both a and a′ are trivial. Choose a global
section σ of a. By Proposition 2.32,

φ := a′σ : R → R

descends to a diffeomorphism R/G → R/H. By equivariance of a, both
σ(1 · x) and 1 · σ(x) are in the same a-fiber (note that 1 is the generator of
the G and H action). Therefore we have the smooth map

R → P ×a P, x 7→ (σ(1 · x), 1 · σ(x)).

By principality of P a−→ R, this yields a smooth map η : R → H given by

σ(1 · x) = (1 · σ(x)) · η(x),

and because H is discrete, η ∈ H is constant. Therefore

φ(1 · x) = φ(x) · η, and so φ(k · x) = φ(x) · (kη).

There are two cases.

• If η = 0, then φ is G-invariant. By definition of the G action, for each
x, we have k · x → 0 as k → −∞, therefore φ(k · x) = φ(x) → φ(0),
and thus φ(x) = φ(0) for all x. But this contradicts the fact φ

descends to a diffeomorphism R/G → R/H.

• If η ̸= 0, then we get a contradiction as follows: for x such that
sign(η) = − sign(φ(x)),

φ(k · x) = ψ̂kη(φ(x)) = ψsign(φ(x))kη(φ(x)) → ±∞ as k → −∞

On the other hand, φ(k · x) → φ(0) = 0 as k → −∞, so we have our
contradiction.

Furthermore,

Proposition 5.36. R/∼ is not a diffeological quasifold.

Proof. Seeking a contradiction, suppose R/∼ is a diffeological quasifold.
Take an open neighbourhood U of [0] in X, a countable subgroup Γ of
Aff(R), a Γ-invariant open subset V of R, and a diffeomorphism F : U →
V/Γ. Fix some x0 ∈ V such that F([0]) = [x0].

By the exact same argument from the first half of the proof of Lemma 5.9,
we may find locally defined lifts f , s : R → R of F and F−1, respectively,
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such that f (0) = x0 and s(x0) = 0. Then f s is a locally defined map that
preserves Γ orbits, and fixes x0.

The composition f ψs is then also a locally defined map that preserves Γ
orbits and fixes x0. Fix an open interval W about x0 such that both f s and
f ψs are defined on W.

By Lemma 5.7, there are γ, δ ∈ Γ such that f s = γ and f ψs = δ on W.
Therefore ( f s)′ = γ′, and in particular s′ is non-vanishing on W. It follows
that s is a diffeomorphism on a neighbourhood of x0. Similarly, f ′ does
not vanish on s(W), and so f is a diffeomorphism on a neighbourhood of
0.

Since ψ′(0) = 1,

γ′ = ( f s)′(x0) = ( f ψs)′(x0) = δ′.

Thus γ and δ differ only by a translation; because ψ(0) = 0, we see that
γ = δ. In other words, f s = f ψs on W. Since f and s are diffeomorphisms,
we conclude that ψ = id in a neighbourhood of 0, which contradictions
the definition of ψ. Therefore no such diffeomorphism F exists, and R/∼
is not a diffeological 1-quasifold.

We suspect that the key feature of the G action on R allowing for
Propositions 5.35 and 5.36 is that the G-action is not jet-determined; all the
ψk have the same jet at 0, yet are different diffeomorphisms for different k.
This is what allows for the existence of the smooth function ψ̂. Conversely,
given a jet-determined action of a discrete group Γ on Rn, at the time of
writing we do not know if a lemma analogous to Lemma 5.7 holds.

The G action on R also gives rise to a counter-example in foliation
theory. We will assume familiarity with foliations and their holonomy.

Proposition 5.37. There exists a foliated manifold (M,F ) for which the quotient
space M/F is not a diffeological quasifold.

Proof. Consider R2 with coordinates (t, x), equipped with the foliation F
spanned by ∂

∂t . The leaves of F are the horizontal lines R × {x}. We have
a Z action on R2 given by

k · (t, x) := (t + k, ψk(x)),

where ψ is the flow from the beginning of this section. This action is
free, properly discontinuous, and preserves F . Therefore M := R2/Z is a
manifold, the quotient π : R2 → M is a covering map, and F/Z := dπ(F )

is a foliation on M. The leaves of F/Z are of the form π (R × {x}), for x ∈
R. A connected total transversal to F/Z is given by T := π({0}×R) ∼= R.
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The holonomy pseudogroup on T associated to F/Z is the pseudogroup
generated by the group {ψk}. In particular, the quotient M/(F/Z) is
diffeologically diffeomorphic to T/{ψk}.5 But as we have seen in Propo-
sition 5.35, T/{ψk} is not a diffeological quasifold. Therefore neither is
M/(F/Z).

5.5 future directions

Proposition 5.37 raises the following question: for which foliations F is the
leaf space M/F a diffeological quasifold? Some candidates include the
null foliation on a compact, connected presymplectic toric manifold, in the
sense of Ratiu and Zung [RZ19] or Lin and Sjamaar [LS19], or Riemannian
foliations, as defined in [Mol88]. This question is the subject of work in
progress together with Yi Lin [LM23].

Whether or not leaf spaces of Riemannian foliations are diffeological
quasifolds, we expect Theorem 5.32 to generalize to these spaces. This
is because such leaf spaces have the form T/Ψ, where T is a manifold
(for instance, a complete transversal), and Ψ is a countably-generated
pseudogroup (for instance, the holonomy pseudogroup of F ) satisfying:

Property. (Lift) Whenever U is an open subset of T, and f : U → T is a smooth
map that preserves Ψ orbits, f is in Ψ.

Compare this to Lemma 5.7. In work in preparation [Miy23b], we show
that Theorem 5.32 extends to the categories of étale effective Lie groupoids
Γ ⇒ T whose pseudogroups Ψ satisfy Property (Lift), and to diffeolog-
ical spaces of the form T/Ψ. These include diffeological quasifolds and
quasifold groupoids, and also the étale Holonomy groupoids of com-
plete Riemannian foliations. Moreover in [Miy23b], we also show that
we can expand the collection of arrows to include submersions between
Lie groupoids, in the sense of [dHLF19], and local subductions between
diffeological spaces (cf. Definition 2.8, and see [IZ13, Article 2.16]).

5 This is because T/{ψk} is the orbit space of the pullback of the holonomy groupoid
associated to F/Z to the transversal T, and these groupoids are Morita equivalent.



B I B L I O G R A P H Y

[ABT13] Marcos M. Alexandrino, Rafael Briquet, and Dirk Töben,
Progress in the theory of singular Riemannian foliations, Differen-
tial Geom. Appl. 31 (2013), no. 2, 248–267. MR 3032647

[AS09] Iakovos Androulidakis and Georges Skandalis, The holonomy
groupoid of a singular foliation, J. Reine Angew. Math. 626
(2009), 1–37. MR 2492988

[AZ13] Iakovos Androulidakis and Marco Zambon, Smoothness of
holonomy covers for singular foliations and essential isotropy,
Math. Z. 275 (2013), no. 3-4, 921–951. MR 3127043

[AZ16] , Stefan-Sussmann singular foliations, singular subalge-
broids and their associated sheaves, Int. J. Geom. Methods Mod.
Phys. 13 (2016), no. suppl., 1641001, 17. MR 3556105

[BP18] Fiammetta Battaglia and Elisa Prato, Nonrational symplectic
toric cuts, Internat. J. Math. 29 (2018), no. 10, 1850063, 19. MR
3861905

[BP19] , Nonrational symplectic toric reduction, J. Geom. Phys.
135 (2019), 98–105. MR 3872625

[BPZ19] Fiammetta Battaglia, Elisa Prato, and Dan Zaffran, Hirzebruch
surfaces in a one-parameter family, Boll. Unione Mat. Ital. 12
(2019), no. 1-2, 293–305. MR 3936308

[BZ15] Fiammetta Battaglia and Dan Zaffran, Foliations modeling
nonrational simplicial toric varieties, Int. Math. Res. Not. IMRN
(2015), no. 22, 11785–11815. MR 3456702

[CdHP20] Alejandro Cabrera, Matias del Hoyo, and Enrique Pujals,
Discrete dynamics and differentiable stacks, Rev. Mat. Iberoam.
36 (2020), no. 7, 2121–2146. MR 4163995

[Cle66] Alfred Clebsch, Ueber die simultane Integration linearer partieller
Differentialgleichungen, J. Reine Angew. Math. 65 (1866), 257–
268. MR 1579322

91



bibliography 92

[CS13] Marius Crainic and Ivan Struchiner, On the linearization theo-
rem for proper Lie groupoids, Ann. Sci. Éc. Norm. Supér. (4) 46
(2013), no. 5, 723–746. MR 3185351

[Dea40] Feodor Deahna, Ueber die Bedingungen der Integrabilität lineärer
Differentialgleichungen erster Ordnung zwischen einer beliebigen
Anzahl veränderlicher Größen, J. Reine Angew. Math. 20 (1840),
340–349. MR 1578247

[dHLF19] Matias del Hoyo and Rui Loja Fernandes, Riemannian metrics
on differentiable stacks, Math. Z. 292 (2019), no. 1-2, 103–132.
MR 3968895

[DI85] Paul Donato and Patrick Iglésias, Exemples de groupes dif-
féologiques: flots irrationnels sur le tore, C. R. Acad. Sci. Paris
Sér. I Math. 301 (1985), no. 4, 127–130. MR 799609

[DLPR12] Lance D. Drager, Jeffrey M. Lee, Efton Park, and Ken Richard-
son, Smooth distributions are finitely generated, Ann. Global
Anal. Geom. 41 (2012), no. 3, 357–369. MR 2886203

[Fer15] Rui Loja Fernandes, Normal forms and Lie groupoid
theory, Geometric methods in physics, Trends Math.,
Birkhäuser/Springer, Cham, 2015, pp. 49–66. MR 3629663

[Fro77] G. Frobenius, Ueber das Pfaffsche Problem, J. Reine Angew.
Math. 82 (1877), 230–315. MR 1579710

[GZ19] Alfonso Garmendia and Marco Zambon, Hausdorff Morita
equivalence of singular foliations, Ann. Global Anal. Geom. 55
(2019), no. 1, 99–132. MR 3916125

[Haw05] Thomas Hawkins, Frobenius, Cartan, and the problem of Pfaff,
Arch. Hist. Exact Sci. 59 (2005), no. 4, 381–436. MR 2188939

[Her62] Robert Hermann, The differential geometry of foliations. II, J.
Math. Mech. 11 (1962), 303–315. MR 0142131

[HM04] Andre Henriques and David S. Metzler, Presentations of non-
effective orbifolds, Trans. Amer. Math. Soc. 356 (2004), no. 6,
2481–2499. MR 2048526

[HMVSC11] Gilbert Hector, Enrique. Macías-Virgós, and Esperanza.
Sanmartín-Carbón, De Rham cohomology of diffeological spaces
and foliations, Indag. Math. (N.S.) 21 (2011), no. 3-4, 212–220.
MR 2835929



bibliography 93

[Hof20] Benjamin Hoffman, Toric symplectic stacks, Adv. Math. 368
(2020), 107135, 43. MR 4082991

[HS21] Benjamin Hoffman and Reyer Sjamaar, Stacky Hamiltonian
actions and symplectic reduction, Int. Math. Res. Not. IMRN
(2021), no. 20, 15209–15300. MR 4329869

[IKZ10] Patrick Iglesias, Yael Karshon, and Moshe Zadka, Orbifolds
as diffeologies, Trans. Amer. Math. Soc. 362 (2010), no. 6, 2811–
2831. MR 2592936

[IZ13] Patrick Iglesias-Zemmour, Diffeology, Mathematical Surveys
and Monographs, vol. 185, American Mathematical Society,
Providence, RI, 2013. MR 3025051

[IZ22] , Diffeology, Beijing World Publication Corporation,
2022, Reprint of IZ13.

[IZL18] Patrick Iglesias-Zemmour and Jean-Pierre Laffineur, Noncom-
mutative geometry and diffeology: the case of orbifolds, J. Noncom-
mut. Geom. 12 (2018), no. 4, 1551–1572. MR 3896235

[IZP21] Patrick Iglesias-Zemmour and Elisa Prato, Quasifolds, diffeol-
ogy and noncommutative geometry, J. Noncommut. Geom. 15
(2021), no. 2, 735–759. MR 4325720

[Jac27] Carl G. J. Jacobi, Ueber die Integration der partiellen Differential-
gleichungen erster Ordnung, J. Reine Angew. Math. 2 (1827),
317–329. MR 1577659

[Jor82] Henri Joris, Une C∞-application non-immersive qui possède la
propriété universelle des immersions, Arch. Math. (Basel) 39
(1982), no. 3, 269–277. MR 682456

[KM22] Yael Karshon and David Miyamoto, Quasifold
groupoids and diffeological quasifolds, Submitted preprint.
https://arxiv.org/abs/2206.14776, 2022.

[KMW22] Yael Karshon, David Miyamoto, and Jordan Watts, Diffe-
ological submanifolds and their friends, Submitted preprint.
https://arxiv.org/abs/2204.10381, 2022.

[Kos53] Jean-Louis Koszul, Sur certains groupes de transformations de
Lie., Géométrie différentielle. Colloques Internationaux du
Centre National de la Recherche Scientifique, Strasbourg,
1953, Centre National de la Recherche Scientifique, Paris,
1953, pp. 137–141. MR 59919



bibliography 94

[Kub90] Jan Kubarski, About Stefan’s definition of a foliation with singu-
larities: a reduction of the axioms, Bull. Soc. Math. France 118
(1990), no. 4, 391–394. MR 1090406

[KW16] Yael Karshon and Jordan Watts, Basic forms and orbit spaces: a
diffeological approach, SIGMA Symmetry Integrability Geom.
Methods Appl. 12 (2016), Paper No. 026, 19. MR 3470746

[Lav18] Sylvain Lavau, A short guide through integration theorems of
generalized distributions, Differential Geom. Appl. 61 (2018),
42–58. MR 3856749

[Lee13] John M. Lee, Introduction to smooth manifolds, second ed.,
Graduate Texts in Mathematics, vol. 218, Springer, New York,
2013. MR 2954043

[Ler10] Eugene Lerman, Orbifolds as stacks?, Enseign. Math. (2) 56
(2010), no. 3-4, 315–363. MR 2778793

[LM23] Yi Lin and David Miyamoto, Riemannian foliations and quasi-
folds, Manuscript in progress, 2023.

[Lob70] Claude Lobry, Contrôlabilité des systèmes non linéaires., SIAM J.
Control (1970), 573–605. MR 271979

[LS19] Yi Lin and Reyer Sjamaar, Convexity properties of presymplectic
moment maps, J. Symplectic Geom. 17 (2019), no. 4, 1159–1200.
MR 4031537

[Mat68] Michihiko Matsuda, An integration theorem for completely in-
tegrable systems with singularities, Osaka Math. J. 5 (1968),
279–283. MR 243555

[McD19] Dusa McDuff, Notes on Kuranishi atlases, Virtual fundamental
cycles in symplectic topology, Math. Surveys Monogr., vol.
237, Amer. Math. Soc., Providence, RI, 2019, pp. 1–109. MR
3931094

[Mei03] Eckhard Meinrenken, Group actions on manifolds, Lecture
notes, 2003.

[Miy23a] David Miyamoto, The Basic de Rham Complex of a Singular
Foliation, Int. Math. Res. Not. IMRN (2023), no. 8, 6364–6401.
MR 4574377

[Miy23b] , Foliations determined by their orbit spaces (tentative),
2023, Manuscript in preparation.



bibliography 95

[Miy23c] , Singular foliations through diffeology, Accepted
preprint. https://arxiv.org/abs/2303.07494. To appear in
Contemporary Mathematics (proceedings) for the special ses-
sion “Recent advances on diffeologies and their applications”
held at the AMS-SMF-EMS Joint International Meeting in
Genoble, July 2022, published by the American Mathematical
Society, 2023.

[MM03] Ieke Moerdijk and Janez Mrčun, Introduction to foliations and
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