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1 A Summary of Valuation Theory

1.1 Convex valuations

Let V be an n-dimensional real vector space, and K(V ) be the set of convex, compact,

non-empty subsets of V , hereafter refered to as convex bodies. A convex valuation is a

complex-valued function φ on K(V ) such that

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

when A ∪B and A ∩B are in K(V ). We may omit the qualifier “convex” if it is implied by

context. Consider an auxillary Euclidean metric on V . Then we can endow K(V ) with the

Hausdorff metric, making K(V ) a locally compact metric space. Changing the Euclidean

structure on V produces an equivalent Hausdorff metric on K(V ), and therefore we may

unambiguously say a convex valuation φ is continuous if it is continuous in a Hausdorff

metric.

A convex valuation φ is translation-invariant if φ(x + A) = φ(A) for all x ∈ V and

A ∈ K(V ). We let Val (V ) denote the collection of continuous and translation-invariant

convex valuations. It is a subspace of C(K(V )), and we equip both spaces with the compact-

open topology, which - since the maps are complex-valued - is also the topology of uniform

convergence on compact sets. This makes Val(V ) is a Fréchet space.1 In fact Val(V ) is a

1Note it is not necessarily saparable.
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Banach space, with norm ‖φ‖ := supA⊆D |φ(A)|, where D is the unit ball of some auxillary

Euclidean metric. That the supremum is finite follows from the Blaschke selection principle,

which implies the supremum is taken over a compact set in K(V ). The triangle inequality

is a consequence of McMullen’s decomposition, which is stated below.

We say a convex valuation φ is k-homogeneous if φ(tA) = tkφ(A) for all t ≥ 0. We say

φ is even if φ(A) = φ(−A), and odd if φ(−A) = −φ(A). The subspaces of k-homogeneous

and even/odd valuations are denoted by Valk(V ) and Val±(V ), respectively. McMullen

proved we have the direct sum decomposition

Val(V ) =
n⊕
k=0

Valk(V ) =
n⊕
k=0

Val+k (V )⊕ Val−k (V ),

as a corollary to his 1977 theorem:

Theorem 1 (McMullen, [16]). Given φ ∈ Val(V ), and A1, . . . , Ar ∈ K(V ), the complex-

valued function f on (R≥0)r defined by

f(t1, . . . , tr) := φ(t1A1 + · · ·+ trAr)

is a polynomial of degree at most dim(V ).

In the case V = Rn with φ taken to be the usual volume, the coefficients of the polynomial

from McMullen’s theorem are Minkowski’s mixed volumes. Note Val0(V ) and Valn(V ) are

one-dimensional. The former is spanned by the Euler characteristic χ, which is identically 1

on K(V ). The latter was described by Hadwiger in 1957:

Theorem 2 (Hadwiger, [13]). Valn(V ) is one-dimensional, and spanned by a Lebesgue mea-

sure.

We can realize Valn(V ) as Dens (V ), the space of translation-invariant densities on
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V . The space GL(V ) of general linear transformations of V acts linearly on Val(V ) by

(g · φ)(A) := φ(g−1(A)). This means Val(V ), and each Val±k (V ), is a representation of

GL(V ). Alesker proved in 2011 that:

Theorem 3 (Alesker, [2]). Each Val±k (V ) is an irreducible representation of GL(V ).

In Appendix A.2, we state some more sophisticated properties of the representation.

1.2 Smooth valuations

A convex valuation φ ∈ Val(V ) is called smooth if the Banach-space valued map GL(V )→

Val(V ) given by g 7→ g ·φ is smooth. We denote the space of smooth valuations by Val∞(V ).

Although this is a subspace of Val(V ), we do not equip it with the subspace topology.

Instead, we give Val∞(V ) the G̊arding topology, which is a stronger linear topology than that

inherited by Val(V ), and with respect to which Val∞(V ) is a Fréchet space. This construction

of Val∞(V ), and its G̊arding topology, are specific instances of more general objects from

representation theory. See Appendix A for more details. McMullen’s decomposition and

Alesker’s irreducibility theorem both apply to Val∞(V ), and thus we use similar notation for

k-homogeneous and even/odd smooth convex valuations.

1.2.1 A characterization of Val∞(V )

In [4], Section 5, Alesker found an extremely useful characterization of smooth valuations

in terms of the normal cycle, which we now describe. First we define the normal cycle of

A ∈ K(V ), denoted N(A). At any x ∈ A, the tangent cone TxA and its dual T ∗xA (also

called the normal cone to A at x) are defined as

TxA := the closure of {y ∈ V | there exists ε > 0 s.t. x+ εy ∈ A} ⊆ V

T ∗xA := {ξ ∈ V ∗ | 〈ξ, y〉 ≥ 0 for all y ∈ TxA} ⊆ V ∗,
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where V ∗ denotes the dual space of V . The tangent cone is a closed convex cone in V , and

its dual is also closed convex cone in V ∗. Then we define the characteristic cycle of A,

denoted CC(A), by

C(A) :=
⋃
x∈A

T ∗x (A).

The characteristic cycle of A is a closed n dimensional subset of T ∗V . Here, we identify T ∗V

with V ×V ∗, possible since V is a real vector space. Then, moreover, C(A) is invariant with

respect to multiplication by R≥0 on the second factor. Let 0 := V × {0} ⊆ V × V ∗ = T ∗V ,

and set

CC(A) := C(A) \ 0

C̄C(A) := CC(A)/R≥0 .

In this way, C̄C(A) is contained in the cosphere bundle PV of V , defined by quotienting

T ∗V \ 0 by multiplication of R≥0 on the second factor. In other words,

PV := (T ∗V \ 0)/R≥0 = V × P+(V ∗)

where P+(V ∗) denotes the oriented lines in V ∗. Then finally, the normal cycle N(A) of

A is taken to be the image of C̄C(A) under the involution on PV given by changing the

orientation of a line. Now fix an orientation on V . This canonically induces an orientation

on C(A), and hence on N(A).

It can be shown N(A) is closed in PV . In [7], Section 1.1.12, it is stated N(A) is lo-

cally bi-Lipschitz equivalent to Rn−1, although no proof of this equivalence is given. Proof
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notwithstanding, the bi-Lipschitz equivalence allows us to integrate smooth (n − 1)-forms

on PV over N(A), and we further get that the resulting linear functional on these forms is

continuous.

Let Ωk(PV )tr denote the set of complex-valued translation-invariant (with respect to

translations on V ) smooth k-forms on PV . Then Theorem 5.2.1 in [4] gives a characterization

of Val∞(V ):

Theorem 4. For any density µ ∈ Dens(V ) and ω ∈ Ωn−1(PV )tr, the map

Ψ(µ, ω) : K(V )→ R, A 7→
∫
A

µ+

∫
N(A)

ω,

is a translation-invariant smooth valuation. Moreover, the map Ψ : Dens(V )⊕Ωn−1(PV )tr →

Val∞(V ) is linear and surjective.

1.2.2 The product of smooth valuations

In 2004, Alesker in [3] introduced a product on Val∞(V ), such that the product map is

continuous in the G̊arding topology, and associative, commutative, and distributive; thus

Val∞(V ) equipped with this product is an algebra over C. The unit of this algebra is the

Euler characteristic. Furthermore, the product satisfies Val∞j (V ) · Val∞k (V ) ⊆ Val∞k+j(V ),

and so in light of McMullen’s decomposition, Val∞(V ) is a graded ring.

In fact, the product map Val∞k (V ) × Val∞n−k(V ) → Val∞n (V ) is a perfect pairing, in the

sense that for any nonzero φ ∈ Val∞k (V ), there is ψ ∈ Val∞n−k(V ) such that φ · ψ 6= 0.

Equivalently, the induced map

Val∞k (V )→ Val∞n−k(V )∗ ⊗Dens(V )

φ 7→ (η 7→ φ · η)
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is injective.2 Equipping the target space Val∞n−k(V )∗ ⊗ Dens(V ) =: Val−∞k (V ) with the

weak-* topology, we then have that Val∞k (V ) ⊆ Val−∞k (V ) is a dense subspace. We call

elements of Val−∞k (V ) generalized translation-invariant convex valuations of degree

k, shortening to generalized valuations of degree k when the context is clear. Giving V a

Euclidean structure, we can identify Dens(V ) ∼= C. This induces an identification Val∞(V )∗⊗

Dens(V ) ∼= Val∞(V )∗, which justifies our naming convention. Similarly, we call elements of

Val−∞(V ) := Val∞(V )∗ ⊗Dens(V ) and

Val±,−∞k (V ) := Val±,∞n−k (V )∗ ⊗Dens(V )

generalized translation-invariant convex valuations, and generalized even/odd translation-

invariant convex valuations of degree k.

The linear action of GL(V ) on Val(V ) induces an action on Val∞(V ) and Val−∞(V ). For

any subgroupG of GL(V ), we denote the collection ofG-invariant valuations by Val(V )G, and

similarly for smooth and generalized translation-invariant k-homogeneous even/odd convex

valuations.

1.3 Another View of Smooth and Generalized Valuations

The reference for this Section is [7], Section 1.2.1. In light of Theorem 4 above, let us define

a smooth (not necessarily translation-invariant) valuation on a smooth oriented manifold X.

Let P(X) be the set of all submanifolds ofX with corners. Let PX denote the cosphere bundle

on X, defined as in the vector space case. A smooth valuation is any map P(X)→ C of

the form

2Here, for a topological vector space E, we let E∗ denote the continuous dual of E, with the weak-*
topology.
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A 7→
∫
A

µ+

∫
N(A)

ω,

where µ ∈ Ωn(X) and ω ∈ Ωn−1(PX), and N(A) is the normal cycle appropriately defined in

this setting (see [7], Section 1.2.1, page 22). We denote the collection of smooth valuations by

V∞(X). As this space is given as a quotient of Ωn(X)⊕Ωn−1(PX), it can be equipped with

a Fréchet topology. A compactly supported smooth valuation is a smooth valuation

for which there is a compact A in X such that its restriction to X r A is zero; denote

the collection of compactly supported smooth valuations by V∞c (X), carrying the smallest

topology such that the imbedding into V∞(X) is continuous. The space V∞c (X) is the

corresponding quotient of Ωn
c (X)⊕ Ωn−1

c (PX).

A generalized valuation is an element of V−∞(X) := (V∞c (X))∗, and is therefore

determined by elements of Dn(X) ⊕ Dn−1(PX), where Dk(X) := Ωk
c (X)∗ is the space of

k-dimensional currents on X. We introduced the spaces V∞(X) and V−∞(X) because by

Proposition 2.5 and preceeding remarks in [10]:

Proposition 5. In the case X = V , we can consider smooth and generalized valuations

which are translation-invariant. There is an identification

Val∞(V ) ∼= V∞(V )tr, Val−∞(V ) ∼= V−∞(V )tr.

1.4 Preliminary Results

Given a smooth, finite-dimensional vector bundle E over a manifold M , we denote the space

of smooth sections of E over M by Γ∞(M, E), and those with compact support by Γ∞c (M, E).

We define the space of generalized sections of E as
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Γ−∞(M, E) := Γ∞c (M, E∗ ⊗ |ω|)∗,

where |ω| is the vector bundle of densities over M , with fiber Dens(TxM) over x ∈ M , and

E∗ is the dual bundle to E . We give Γ−∞(M, E) the weak-* topology.

We let Grk(V ) denote the Grassmanniann of k-dimensional real subspaces of a real vector

space V . Often in the sequel, we will take V = Cn, and therefore write Grk(Cn) for the Grass-

manniann of real k-planes. Since this symbol normally denotes the complex Grassmanniann,

remember this is not the case for us.

1.4.1 The Klain map

Let Kk denote the vector bundle over Grk(V ) whose fiber over E is the one-dimensional

space Dens(E). We can construct a map

Klk : Val+k (V )→ Γ(Grk(V ), Kk),

called the Klain map, as follows. For φ ∈ Val+k (V ) and E ∈ Grk(V ), the map φ|E := φ(E∩·)

on K(E) is an element of Valk(E). By Hadwiger’s theorem (Theorem 2), it is therefore

a multiple of a Lebesgue measure on E, and hence we get φ|E ∈ Dens(E). Then we set

Klk(φ)(E) := φ|E. This is a continuous section of Kk, hence Klk is well-defined. Klain

showed in 2000 that

Theorem 6 (Klain, [14]). The map Klk is injective and GL(V ) equivariant.

Note here that the action of g ∈ GL(V ) on s ∈ Γ(Grk(V ), Kk) is defined by the pull-back:
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g∗(s)(E) := g−1
∗ s(gE), E ∈ Grk(V ). (1)

Naturally, this definition extends to the case where Kk is replaced by the bundle of l-densities

Dens(E)l, and for dual l-densities Dens∗(E)l = Dens(E)−l.

The proof of Klain’s theorem relies on his previous result that every simple element of

Val(V ) (i.e. one vanishing on sets in K(V ) of dimension less than n) is a multiple of some fixed

Lebesgue measure. Klain’s theorem is useful because it implies that a valuation φ ∈ Val+k (V )

is determined by its Klain function Klk(φ). Note that Klain’s map takes smooth valuations

to smooth sections, i.e.

Klk : Val+,∞k (V )→ Γ∞(Grk(V ), Kk). (2)

According to Proposition 4.4 in [6], Klain’s map extends uniquely to a GL(V )-equivariant

imbedding

Klk : Val+,−∞k (V )→ Γ−∞(Grk(V ), Kk),

which remains injective and has closed image in the weak-* topology.

In the presence of a Euclidean structure on V , we get an associated Lebesgue measure vol

on V . This volume induces a Lebesgue measure volE on each subspace E ∈ Grk(V ); in the

case V = Rn, the induced measures are Hausdorff measures of dimension k. These volE let

us define a SO(n)-invariant continuous global section s0 ∈ Γ(Grk(V ), Kk) by s0(E) := volE,

and this section defines a trivialization of Kk. Under this trivialization, any generalized

section of Klain’s bundle is given by fs0, where f ∈ C−∞(Grk(V )) is a generalized function
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on the Grassmannian.

1.4.2 The Crofton map

Let Ck be the bundle over Grn−k(V ) whose fiber over E is Dens(V/E)⊗Dens(TE Grn−k(V )).

Smooth sections of Ck are smooth measures s ∈ M∞(Grn−k(V ),Dens(V/E)); indeed, this

is the definition of the latter space. We also have the isomorphism

M∞(AGrn−k(V ))tr =M∞(Grn−k(V ),Dens(V/E)),

where the lefthand side is the space of translation-invariant smooth measures on the affine

Grassmanniann. We define, for s ∈ Γ∞(Grn−k(V ), Ck) =M∞(AGrn−k(V ))tr,

Crn−k(s)(A) :=

∫
AGrn−k(V )

χ(A ∩ E)ds(E), A ∈ K(V ).

Alesker’s irreducibility theorem can be used to show Crn−k(s) is a smooth k-homogeneous

convex valuation. See [11], Section 2.1, for details. We therefore get a map

Γ∞(Grn−k(V ), Ck)→ Val+,∞k (V ),

called the Crofton map. Whereas the Klain map was injective,

Theorem 7. The Crofton map Crn−k is surjective.

Ultimately, surjectivity is a consequence of Alesker’s irreducibility theorem; see Theorem

2.3.2 in [7] for more context. Proposition 4.5 in [6] gives that the Crofton map extends

uniquely to a surjection
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Γ−∞(Grn−k(V ), Ck)→ Val+,−∞k (V ).

The Crofton map is also GL(V )-equivariant. We call elements of Γ−∞(Grn−k(V ), Ck) gen-

eralized Crofton measures of degree k (or Crofton distributions). Crofton distributions

are given by sections of a simpler bundle when we are concerned with G-invariants. First,

note the well-known fact that the tangent space to the Grassmanniann satisfies

TE Grn−k(V ) = Hom(E, V/E) = E∗ ⊗ V/E. (3)

Therefore we can write

Dens(TE Grn−k(V )) = Dens(E∗ ⊗ V/E) by 3

= Densk(E∗)⊗Densn−k(V/E) distributing over the tensor product

= Densn(E)⊗Densn−k(V ). (4)

The last line uses the isomorphism Dens(V/E) = Dens(E∗)⊗Dens(V ). We now see the

Crofton bundle satisfies

Ck|E = Dens(V/E)⊗Dens(TE Grn−k(V )) = Densn+1(E∗)⊗Densn−k+1(V ).

With respect to the action of GL(V ) on the Grassmannian, this identification is stab(E)-

equivariant. Since Densn−k+1(V ) is independent of the fiber E, it follows that G-invariant

elements of Val+,−∞k (V ) are given by generalized sections s ∈ Γ−∞(Grn−k(V ),Dens(E∗)n+1)G.
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Now, note that Dens(E∗) = Dens∗(E), and also that (Densl(E))∗ = Dens−l(E). Therefore,

we view s ∈ Γ−∞(Grn−k(V ),Dens−(n+1)(E)).

We can further simplify the situation by considering the Euclidean trivialization as in

the previous discussion of Klain’s imbedding. In this case, Crofton distributions of degree

k are given by fs0, where f ∈ C−∞(Grn−k(V )) and s0 ∈ Γ(Grn−k(V ),Dens−(n+1)(E)) is the

continuous global section of the (n+1)-dual density bundle on E determined by an auxillary

Euclidean structure on V .

1.4.3 The cosine transform

By the action of the Klain map on smooth valuations given by (2), and by the definition of

the Crofton map, we can compose the Klain and Crofton maps to get a new map

Tn−k,k := Klk ◦Crn−k : Γ∞(Grn−k(V ), Ck)→ Γ∞(Grk(V ), Kk).

We call Tn−k,k the cosine transform. It is a GL(V )-equivariant map, and its kernel is

the Kernel of Crn−k (since the Klain map is injective).

Now equip V with a Euclidean structure. This induces a volume vol on V , and a volume

volk on each E ∈ Grk(V ), and thus also trivializes the Klain and Crofton bundles. We can

also identify Grk(V ) with Grn−k(V ), and therefore realize the cosine transform as a map

Tk : C∞(Grk(V ))→ C∞(Grk(V )). Define the cosine of the angle between E,F ∈ Grk(V )

by

| cos(E,F )| := voli(PrF (A))

voli(A)
, A ⊆ E, voli(A) > 0,

where PrF is the orthogonal projection of A onto F . Then the cosine transform Tk is

given explicitly by
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Tk(f)(E) =

∫
Grk(V )

f(F )| cos(E,F )|dF. (5)

In 2004, Alesker and Bernstein in [5] studied the range of this map. According to [9],

Section 2.3, the map Tk is self-adjoint, and therefore extends to a map Tk : C−∞(Grk(V ))→

C−∞(Grk(V )). An extremely useful property of this extension is that on the Dirac delta

δE ∈ C−∞(Grk(V )), we have

Tk(δE)(F ) = | cos(E,F )|. (6)

This is used in the following lemma:

Lemma 8. Let φ ∈ Val+,∞k (V ), and take mφ ∈ Γ∞(Grn−k(V ), Ck) such that Crn−k(mφ) = φ

(possible by surjectivity of the Crofton map). Then, viewing mφ as a smooth measure,

Klk(φ)(E) = 〈mφ, | cos(E, ·)|〉, E ∈ Grk(V ).

Proof. Simply write

Klk(φ)(E) = Klk(Crn−k(mφ))(E)

= 〈Tn−k,kmφ, δE〉 by definition of the Dirac delta

= 〈mφ, TkδE〉 using a Euclidean structure on V, and self-adjointness

= 〈mφ, | cos(E, ·)|〉 by (6).
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1.4.4 The Alesker-Fourier transform

In 2011, Alesker in [1] found a GL(V )-equivariant linear isomorphism

F : Val±,∞k (V )→ Val±,∞n−k (V ∗)⊗Dens(V ),

now called the Alesker-Fourier transform. While F acts on both even and odd valuations,

we have a simple characterization of F only in the even case. For φ ∈ Val+,∞k (V ), we set Fφ

to be the valuation with Klain function

KlFφ(E⊥) := Klφ(E), E ∈ Grk(V ),

where the above is written assuming an underlying Euclidean metric on V . However, we

could work in invariant terms, noting that (E⊥)∗ is canonically isomorphic to V/E; in this

view, the left side is in

Dens(E⊥)⊗Dens(V ) = Dens∗(V/E)⊗Dens(V ) = Dens(E),

which is necessary as the right side is also in Dens(E). In Section 6.2 of [6], the au-

thors find that the Alesker-Fourier transform extends to a GL(V )-equivariant isomorphism

Val+,−∞k (V ) ∼= Val+,−∞n−k (V ). Therefore, we only need to study the structure of Val+,−∞k (V )

for k ≤ [n/2].
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2 The Indefinite Unitary Group

Consider a complex vector space W , equipped with a hermitian form h of signature (p, q).

The indefinite unitary group U(p, q), also denoted U(h), is the subgroup of GL(W ) which

preserves the form h. Equipping W ∼= Cn, n = p + q, with a standard basis, h is unitarily

equivalent to the sesquilinear form

(u, v) 7→ u1v1 + · · ·+ upvp − up+1vp+1 − · · · − up+qvp+q.

Then, in terms of matrices, U(p, q) is the matrix subgroup of GL(n;C) such thatM∗ΦM = Φ,

where Φ is the diagonal matrix with entry Φii = 1 for i ≤ p and Φii = −1 for i > p.

The special indefinite unitary group SU(p, q) is the subgroup of all M ∈ U(p, q) with

determinant 1.

An immediate consequence of the fact M∗ΦM = Φ is:

1 = | det Φ| = | detM∗ΦM | = | detM |2,

so | detM | = 1 for M ∈ U(1, 1). Then, since M is invertible, the matrix M∗M is hermitian

and positive-definite. So then |M | :=
√
M∗M , where we take the positive-definite square

root, is well-defined, hermitian, and positive-definite.

2.1 The Group U(1, 1)

We now consider the case of U(1, 1) ≤ GL(n,C). Here Φ = ( 1 0
0 −1 ). The following proposition

and its proof are due to Simon, found in [17], page 566-567.

Proposition 9. (i) If M ∈ U(1, 1) and M ≥ 0, then M has the form
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M =

 cosh t u sinh t

u sinh t cosh t

 =: P (t, u), (7)

or equivalentely M = ρ−1

 1 −a

−a 1

 =: A(α),

for some t ≥ 0 and |u| = 1, or |α| < 1 with ρ =
√

1− |α|2.

(ii) Any M ∈ U(1, 1) can be expressed uniquely as M = U |M |, where U and |M | are in

U(1, 1), U is unitary, and |M | ≥ 0.

(iii) Any unitary transformation in U(1, 1) has the form
(
u1 0
0 u2

)
, for some |u1| = |u2| = 1.

(iv) Any M = ( a bc d ) ∈ U(1, 1) satisfies

|a| = |d|, |b| = |c|, |a|2 − |b|2 = 1 (8)

and ab− cd = 0. (9)

Conversely any M satisfying both (8) and (9) is in U(1, 1). As a consequence,

SU(1, 1) =


a b

b a

 : |a|2 − |b|2 = 1

 . (10)

(v) The space U(1, 1) is homeomorphic to S1 × S1 × D and SU(1, 1) is homeomorphic to

S1×D, where D is the open unit disk in C2. As a corollary, both U(1, 1) and SU(1, 1)

are connected.
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Proof. (i) Suppose M = ( a bc d ) ∈ U(1, 1) is hermitian and M ≥ 0. Then detM is real and

positive, so detM = 1 and M ∈ SU(1, 1). Therefore M−1 =
(
d −b
−c a

)
, and

Φ = M∗ΦM ⇐⇒ M = ΦM−1Φ =

d b

c a

 .

Thus d = a, and since M is positive-definite, a > 0. This means 1 = detM = a2 − bc,

and so bc ∈ R, with neither b nor c zero. Then c = ρb̄ for some ρ ∈ R, and therefore

1 = a2 − ρ|b|2. On the other hand, condition (8) holding (an easy consequence of the

fact M ∈ U(1, 1)) means 1 = a2 − |b|2, so ρ = 1.

In sum, a = d > 0 and c = b̄ and a2 − |b|2 = 1. Therefore a = cosh t and |b| = sinh t

for some t ∈ R, and b = u sinh t for some |u| < 1. So then M = P (t, u), as desired. It

is easily seen P (t, u) = A(α) for some |α| < 1.

(ii) By polar decomposition, we can uniquely write M = U |M |, where U is unitary and

|M | =
√
M∗M ≥ 0. All that remains is to show U and |M | are in U(1, 1). Since

M ∈ U(1, 1), then M∗M ∈ SU(1, 1) and is positive-definite. Therefore by (i), we have

M∗M = P (t, u) for t ≥ 0 and |u| = 1. A straightforward computation then shows

|M | =
√
P (t, u) = P (t/2, u) ∈ SU(1, 1).

This also implies U = M |M |−1 ∈ U(1, 1).

(iii) If U ∈ U(1, 1) is unitary, then the condition U∗ΦU = Φ becomes ΦU = UΦ, meaning U

is diagonal. Its entries having unit norm is then a consequence of the fact U ∈ U(1, 1)

implies condition (8) holds.

(iv) Let M ∈ U(1, 1), and write M = U |M |. Then by (i) - (iii), we can write U =
(
u1 0
0 u2

)
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and |M | = P (t, u3). We get

M = U |M | =

u1 0

0 u2


 cosh t u3 sinh t

u3 sinh t cosh t

 =

 u1 cosh t u1u3 sinh t

u2u3 sinh t u2 cosh t

 .

Since we can see any M satisfying (8) and (9) must be of this form, then M ∈ U(1, 1).

The converse implication is easily verified, and was already used in parts (i) and (iii).

Finally, note M ∈ SU(1, 1) if and only if u1 = u2, which gives description (10) of

SU(1, 1).

(v) In (iii) we saw that K := U(2) ∩ U(1, 1) is the group of diagonal unitary matrices.

Furthermore, using (ii) and (iii), we see that polar decomposition expresses any M ∈

U(1, 1) uniquely as a product of U ∈ K and |M | = A(α) ∈ SU(1, 1), for |α| < 1.

Therefore, the map

K × {A(α) : |α| < 1} → U(1, 1)

(U,A(α)) 7→ UA(α)

is one-to-one and onto. It is straightforward to check this map is also a homeomor-

phism. Then, since K is homeomorphic to S1×S1 and {A(α)} is homeomorphic to D,

we get the desired result U(1, 1) ∼= S1 × S1 ×D. The case SU(1, 1) is seen via exactly

similar reasoning.

20



2.2 The Action of U(p, q) on Grk(Cn)

Consider Cn equipped with hermitian inner product h of signature (p, q), given by the matrix

Φ as defined above. We equip R2n with the complex structure J :=
(

0 −In
In 0

)
, where In is the

n× n identity matrix. Then we identify (Rn, J) with Cn by

(x1, . . . , x2n) = (x1 + ixn+1, x2 + ixn+2, . . . , xn + ix2n).

We also get an identification GL(n,C) ≤ GL(2n,R). In this way, h defines a signature

(2p, 2q) non-degenerate quadratic form Q on R2n defined by

Q(x) := h(x, x) = x2
1 + x2

n+1 + · · ·+ x2
p + x2

n+p − x2
p+1 − x2

n+p+1 − · · · x2
n − x2

2n.

We also use Q to denote the accompanying bilinear form on R2n, given by Q(x, y) :=

Reh(x, y). Clearly from the definition of Q, we have U(p, q) ≤ O(2p, 2q) = O(Q). The

Kähler form ω on Cn associated to h is defined by ω(u, v) := − Imh(u, v). The form ω is

a symplectic form on R2n, and in this picture we have the relation Q(u, v) = ω(u, Jv).

Now consider V ∈ Grk(Cn) (recall our convention that this denotes the real Grassman-

niann). Then Q|V has signature (a, b), where 0 ≤ a, b and a+ b ≤ k. Let

Λa,b(k) := {V ∈ Grk(Cn) : Q|V has signature (a, b)}. (11)

Note that according to Section 4.1 of [9], Witt’s theorem implies the non-empty Λa,b(k)

are the orbits of O(2p, 2q) acting on R2n. As the action of U(p, q) on Grk(Cn) preserves

the signature of Q|V (since it preserves h, hence Q), the orbits of this action are subsets

of Λa,b(k). In the non-degenerate case V ∈ Λa,b(k) where a + b = k, we say a basis of
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{u1, . . . , uk} of V is Q-orthonormal if Q(ui, uj) = 0 for i 6= j and Q(ui) ∈ {−1, 1} with

Q(ui) ≤ Q(uj) when i ≤ j. Such a basis always exists.

Since (Cn, ω) is a real symplectic vector space, we define for any real vector subspace V ,

V ω := {u ∈ Cn | ω(u, v) = 0 for all v ∈ V },

and say V is symplectic if V ∩V ω = {0}, isotropic if V ⊆ V ω, and Lagrangian if V = V ω.

Since U(p, q) preserves ω, we may also declare orbits in the Grassmanniann to be symplectic,

isotropic, or Lagrangian according to the status of any representative.

We denote by P the usual Euclidean inner product on R2n. The forms P and Q are

compatible, in the sense that we can decompose R2n = V2p ⊕ V2q, where dimV2p = 2p and

dimV2q = 2q, such that

V2p = {x : P (x) = Q(x) and V2q = {x : P (x) = −Q(x)}.

There is an involution S : R2n → R2n such that Q(x, y) = P (x, Sy). In coordinates, S is

given by changing the sign of the even-indexed coordinates.

2.3 The Differential of the Action

For now, we do not use a complex structure, and work in Rn. For g ∈ GL(n,R), define the

function ψg : Grk(Rn)→ R by

ψg(E) := | det(Jac(g : E → gE))|−2,

where Jac(g : E → gE) denotes the Jacobian matrix of the function E → gE given by
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x 7→ gx. This Jacobian is calculated by equipping E and gE with the Euclidean structure

induced by P . Since g is linear as a function E → gE, its Jacobian is constant, so ψg is

well-defined.

For E ∈ Grk(Rn), let {ui} be a P -orthonormal basis. Let M(E) denote the matrix with

entry M(E)ij := Q(ui, uj). Then let τ(E) ∈ [0, π/2] be defined by

cos 2τ(E) := detM(E).

This definition is independent of the choice of P -orthonormal basis. We have from [9],

Proposition 4.7:

Proposition 10. (a) If Q|E is non-degenerate, and g ∈ O(p, q), then

ψg(E) =
cos 2τ(gE)

cos 2τ(E)
.

(b) ψg ≡ 1 for g ∈ O(n).

(c)

| det Jac(g : Grk(Rn)→ Grk(Rn))|E| = ψg(E)n/2| det g|k,

where the Jacobian is calculated by fixing any O(n)-invariant Riemannian metric on

the Grassmanniann.

Proof. (a) Suppose E ∈ Grk(Rn) is such that Q|E is non-degenerate, and let g ∈ O(p, q).

Take a basis {vi}ki=1 of E. By definition,
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cos 2τ(E) =
detQ(vi, vj)

detP (vi, vj)
, cos 2τ(gE) =

detQ(gvi, gvj)

detP (gvi, gvj)
.

As we assume g ∈ O(p, q), we must have detQ(vi, vj) = detQ(gvi, gvj), which com-

bined with the above gives

cos 2τ(gE)

cos 2τ(E)
=

detP (vi, vj)

detP (gvi, gvj)
= ψg(E).

(b) This is straightforward.

(c) First, note ψg ≡ 1 for any g ∈ O(n). So then, appealing to (b), perhaps by composing

with g ∈ SO(n), we may assume gE = E. We need to determine the action of g on

Dens(TE Grk(Rn)). Recall that (4) gives us

Dens(TE Grk(Rn)) = Densn(E∗)⊗Densk(Rn).

Now, say Dens(E) = span(volE), where volE is the Lebesgue volume induced by P on

E. The action of g on Dens(E) is given by g · volE = g−1
∗ volE, and therefore satisfies

∫
E

f ◦ g−1ψg−1(E)−1/2d volE =

∫
E

fd volE .

Since ψg−1(E) is constant, the above tells us that g · volE = ψg−1(E)1/2 volE. Note

here ψg−1(E) = ψg(E)−1, so g acts on Dens(E) by the scalar ψg(E)−1/2. Then g acts

on Densn(E∗) by ψg(E)n/2. As we can clearly see g acts by the scalar | det g|k on
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Densk(Rn), then we conclude g acts on Dens(TE Grk(Rn)) = Densn(E∗) ⊗ Densk(Rn)

by the scalar ψg(E)n/2| det g|k, as desired.

Now consider the case (R2n, J) ∼= Cn. In practice, when searching for U(p, q)-invariant

generalized sections of Klain and Crofton’s bundles, we use the Euclidean trivialization as

defined in Sections 1.4.1 and 1.4.2. In doing so, we get the following lemma

Lemma 11. Generalized sections of Klain and Crofton’s bundles Kk and Cn−k invariant un-

der action of U(p, q) correspond to generalized functions f, g ∈ C−∞(Grk(Cn)) transforming

by

M∗f = ψ
1/2
M f, M∗h = ψ

−(n+1)/2
M h

respectively, for all M ∈ U(p, q).

Proof. Consider first Klain’s bundle. Suppose s ∈ Γ−∞(Grk(Cn), Kk) is U(p, q)-invariant.

Using the Euclidean trivialization, write s = fs0, where s0 ∈ Γ(Grk(Cn),Dens(E)) comes

from the Euclidean structure P on Cn. Then

M∗s = s ⇐⇒ M∗(fs0) = fs0 ⇐⇒ M∗fM∗s0 = fs0 ⇐⇒ M∗f = f
s0

M∗s0

.

Now we can compute, for E ∈ Grk(Cn) and A ⊆ E measurable,

M∗s0(E)(A) = (M−1)∗s0(ME)(A) by definition

= s0(ME)(MA)

= ψ−1/2
g (E)s0(E)(A) by choice of s0.
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The claim for Klain’s bundle immediately follows.

Now consider Crofton’s bundle. As in the end of Section 1.4.2, use the Euclidean trivi-

alization to identify a U(p, q)-invariant Crofton distribution of degree n− k with hs0, where

h ∈ C−∞(Grk(Cn)) and s0 ∈ Γ(Grk(Cn),Dens−(n+1)(E)) comes from the Euclidean structure

P on Cn. Then the claim for Crofton’s bundle follows in the same way as in Klain’s case,

from the observation that

M∗s0(E)(A) = ψ
(n+1)/2
M (E)s0(E)(A), E ∈ Grk(Cn), A ⊆ E.

3 The Action of U(1, 1) on Grk(C2)

We now investigate in detail the case of U(1, 1) acting on Grk(C2) for k = 1 and 2. Let

{ei}2
i=1 be the standard basis of C2 as a complex vector space.

3.1 The case k = 1

For this section, we denote Λa,b(1) = Λa,b (recall definition (11)). Let P+(C2) denote the real

oriented lines in C2 (that is, equivalence classes of the relation ( zw ) ∼ λ( zw ) for λ > 0). Then

GL(2,C) acts on P+(C2) by M · [z : w] := [M( zw )]. We claim

Proposition 12. The orbits of the action of U(1, 1) on P+(C2) are as follows:

orbit open/closed dimension

Λ1,0 = U(1, 1).[1 : 0] = {[z : w] | |z|2 − |w|2 > 0} open 3

Λ0,1 = U(1, 1).[0 : 1] = {[z : w] | |z|2 − |w|2 < 0} open 3

Λ0,0 = U(1, 1).[1 : 1] = {[z : w] | |z|2 − |w|2 = 0} closed 2
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The first two columns would be the exact same if we were to consider the action of U(1, 1)

on unoriented lines P(C2) = Gr1(C2), or on complex lines PC(C2). In the former case, the

dimensions also agree, but in the latter, they are different.

To compute the dimension of the closed orbit, we need the following result, Theorem

21.18 from [15]:

Theorem 13. Suppose G is a Lie group and M is a G-homogeneous space (that is, M is

a smooth manifold on which G acts smoothly and transitively). Then for any p ∈ M , the

stabilizer Gp is closed, and the map G/Gp → M defined by gGp 7→ g · p is an equivariant

diffeomorphism.

Remark 14. Here we put the canonical smooth structure on the coset space G/Gp. It has

dimension dimG− dimGp (see [15] Theorem 21.17).

Proof of the proposition. Consider [z : w] ∈ P+(C2). For |z|2 − |w|2 > 0 (resp. < 0) [resp.

= 0], define

M :=
1√

|z|2 − |w|2

z w

w z


resp. M :=

1√
|w|2 − |z|2

w z

z w




resp. M :=
1

|z|

z 0

0 w


 .

By Proposition 9, M ∈ U(1, 1). Then noting that [z : w] = M · [1 : 0] (resp. M · [0 : 1])

[resp. M · [1 : 1]] completes the characterization of the orbits. To see the orbits are distinct,

note that ( a bc d ) · [1 : 0] = [0 : 1] implies a = 0, which is impossible for M = ( a bc d ) ∈ U(1, 1).

Similarly, if M · [1 : 1] = [1 : 0] (resp. [0 : 1]) then a = b (resp. c = d), which is again

impossible for indefinite unitary M .
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To compute the dimensions of the orbits, notice that the first two Λ1,0 and Λ0,1 are

open in P+(C2), and therefore must have full dimension 3. Fort the last orbit, notice we

realized Λ0,0 as the orbit of [1 : 1] under the action of the subgroup U(1, 1) ∩ U(2). As

U(1, 1).[1 : 1] = (U(1, 1) ∩ U(2)).[1 : 1] is closed, it is a submanifold of P+(C2). This means

it is a (U(1, 1) ∩ U(2))-homogeneous space, and so by Theorem 13, its dimension is equal

to dimU(1, 1) ∩ U(2) − dim(U(1, 1) ∩ U(2))[1:1]. We find that
(
u1 0
0 u2

)
· [1 : 1] = [1 : 1] if

and only if u1 = u2 ∈ R>0, so that (U(1, 1) ∩ U(2))[1:1] = {( 1 0
0 1 )}. This has dimension 0, so

dim Λ0,0 = 2− 0 = 2.

Note that since all elements of P(C2) are one-dimensional, the three orbits are isotropic.

3.2 The case k = 2

Here denote Λa,b(2) = Λa,b.

Theorem 15. The orbits of the action of U(1, 1) on Gr2(C2) are characterized by the fol-

lowing table:

Signature Orbit representatives Dimension sym/iso/Lag

Λ2,0 V θ
2,0 := spanR (( 1

0 ), ( i cosh θ
sinh θ )), θ ≥ 0 2 if θ = 0, 3 else sym

Λ0,2 V θ
0,2 := spanR (( 0

1 ), ( sinh θ
i cosh θ )), θ ≥ 0 2 if θ = 0, 3 else sym

Λ1,1 V θ
1,1 := spanR (( 1

0 ), ( i sinh θ
cosh θ )), θ ≥ 0 3 Lag if θ = 0, sym else

Λ1,0 spanR (( 1
0 ), ( i1 )) 3 sym

Λ0,1 spanR (( 0
1 ), ( 1

i )) 3 sym

Λ0,0 V ±0,0 := spanR (( 1
1 ), ( i

±i )) 1 Lag for V +
0,0, sym for V −0,0.

In light of this description, when a + b = 2 let Λθ
a,b := U(1, 1).V θ

a,b for θ ≥ 0, and also

let Λ±0,0 := U(1, 1).V ±0,0. The remainder of this subsection is devoted to proving Theorem 15.

First, we justify the orbit representatives; then we compute the dimensions; and finally we

justify whether the orbits are symplectic, isotropic, or Lagrangian.
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Remark 16. The parametrization of the non-degenerate orbits by a single real parameter

is in analogy with the case of U(n) acting on Grk(Cn). Here, the orbits are parametrized

by the multiple Kähler angle θ, defined by Tasaki in [18]. For k ≤ n, the angle θ is a

tuple (θ1, . . . , θ[k/2]), with θi ∈ [0, π/2]. In the case k = 2, the multiple Kähler angle satis-

fies cosθ = ω(u, v), where ω is the Kähler form on Cn determined by the usual Euclidan

structure.

3.2.1 Classifying the orbit representatives

Useful U(1, 1) transformations

We list some useful transformations. Denote by G(u′, v′) a linear transformation mapping

u′ to v′. Under the indicated conditions, the following transformations are in U(1, 1):

• G(u, e1) :=
(
u1 u2
u2 u1

)−1
, when Q(u, u) = 1. Note this is in SU(1, 1).

• G
(
x,
( x1
|x2|
))

:=
(

1 0

0
x2
|x2|

)
, when x2 6= 0. Moreover, this fixes e1. Note this is in

{( 1 0
0 d ) | |d| = 1}, which we can identify with S1.

• G(u, e2) :=
(
u2 u1
u1 u2

)−1
, when Q(u, u) = −1. Note this is in SU(1, 1).

• G
(
x,
(
|x1|
x2

))
:=
(

x1
|x1|

0

0 1

)
, when x1 6= 0. Moreover, this fixes e2. Note this is in

{( a 0
0 1 ) | |a| = 1}, which we can identify with S1.

• G(u, e1 +e2) :=
(
u1 0
0 u2

)−1
, when |u1| = |u2| = 1. Note this is in {( a 0

0 d ) | |a| = |d| = 1},

which we can identify with S1 × S1.

The case Λa,b with a+ b = 2

Suppose Q|V is non-degenerate. Consider any Q-orthonormal basis {u′, v′} of V . Then

{−u′, v′} is also a Q-orthonormal basis of V . Since ω(−u′, v′) = −ω(u′, v′), we can therefore

always take a Q-orthonormal basis {u, v} of V such that ω(u, v) ≥ 0.
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Lemma 17. If Q|V is non-degenerate with signature (2, 0) or (0, 2), then a Q-orthonormal

basis {u, v} such that ω(u, v) ≥ 0 further satisfies ω(u, v) ≥ 1.

Proof. Suppose Q|V has signature (2, 0). Then Q(u) = Q(v) = 1, so G(u, e1) ∈ U(1, 1)

takes u 7→ e1 and v 7→ G(u, e1)v =: x. Since U(1, 1) preserves h, it preserves ω(u, v),

and therefore 0 ≤ ω(u, v) = − Imh(e1, x) = Im(x1). Moreover, since U(1, 1) preserves Q,

we find 0 = Q(u, v) = Q(e1, x), and so Re(x1) = 0. Thus x1 = iω(u, v), and therefore

1 = Q(v) = Q(x) = ω(u, v)2 − |x2|2 = 1. So then ω(u, v)2 ≥ 1, and as ω(u, v) ≥ 0, we

conclude ω(u, v) ≥ 1.

Now supposing Q|V has signature (0, 2). Then Q(u) = Q(v) = −1, and so G(u, e2) ∈

U(1, 1) takes u 7→ e2 and v 7→ G(u, e2)v =: x. By similar arguments to those in the previous

case, since U(1, 1) preserves both ω and Q, we find x2 = iω(u, v). Then −1 = Q(x) =

|x1|2 − ω(u, v)2, and so ω(u, v)2 ≥ 1. Since ω(u, v) ≥ 0, we again conclude ω(u, v) ≥ 1.

In light of this lemma, given V such that Q|V is non-degenerate with signature (2, 0)

or (0, 2) we may define the Kähler angle θ := cosh−1 ω(u, v) ≥ 0, where {u, v} is a Q-

orthonormal basis of V such that ω(u, v) ≥ 1. Note this is independent of the choice of

basis. Clearly θ is invariant under action by U(1, 1).

Proposition 18. Suppose Q|V is non-degenerate with signature (2, 0) or (0, 2) respectively,

and has Kähler angle θ ≥ 0. Then V is in the orbit of

spanR (e1, ( i cosh θ
sinh θ )) or spanR (e2, ( sinh θ

i cosh θ )) , respectively.

In particular, the orbits are completely characterized by the signature of Q|V and θ.

Proof. Suppose Q|V has signature (2, 0). By the proof of Lemma 17, we already know V

to be in the orbit of spanR(e1, x), where x1 = i cosh θ and |x2| =
√
|x1|2 − 1 = sinh θ. If

θ = 0, then we are done since |x2| = 0 means x2 = 0. Otherwise, acting on spanR(e1, x) by

G
(
x,
( x1
|x2|
))
∈ U(1, 1) shows V is in the desired orbit.
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If Q|V has signature (0, 2), then Lemma 17 shows V is in the orbit of spanR(e2, x),

where x2 = i cosh θ and |x1| = sinh θ. If θ = 0, again we are done. Otherwise act by

G
(
x,
(
|x1|
x2

))
.

Now we consider the case where Q|V has signature (1, 1). Here, we define the Kähler

angle to be θ := sinh−1 ω(u, v) ≥ 0, where {u, v} is a Q-orthonormal basis of V such that

ω(u, v) ≥ 0. Again, this is invariant under change of basis.

Proposition 19. Suppose Q|V has signature (1, 1) and V has Kähler angle θ ≥ 0. Then V

is in the orbit of spanR (e1, ( i sinh θ
cosh θ )). In particular, the orbits are completely characterized

by θ.

Proof. By choice of {u, v}, we have Q(u) = 1 and Q(v) = −1. Then G(u, e1) ∈ U(1, 1), and

it takes u 7→ e1 and v 7→ G(u, e1)v =: x. Exactly as in Lemma 17, we find that U(1, 1)

preserving ω and Q implies x1 = iω(u, v). Then −1 = Q(x) = ω(u, v)2 − |x2|2, and so

|x2| = cosh θ. Then, since |x2| > 0, we can act on spanR (e1, x) by G
(
x,
( x1
|x2|
))
∈ U(1, 1) to

see V is in the desired orbit.

Remark 20. Note that, for a = 0, 2, we have realized Λ0
a,b as the orbits of SU(1, 1) acting

on Gr2(C2).

The degenerate case Λa,b with a+ b = 1

Proposition 21. Suppose Q|V has signature (1, 0) or (0, 1), respectively. Then V is in the

orbit of spanR (( 1
0 ), ( i1 )) or spanR (( 0

1 ), ( 1
i )), respectively.

Proof. Suppose Q|V has signature (1, 0). We get a basis {u, v} of V with Q(u) = 1, Q(u, v) =

Q(v) = 0, and ω(u, v) ≥ 0. Then G(u, e1) ∈ U(1, 1) takes u 7→ e1 and v 7→ G(u, e1)v =: x.

Since U(1, 1) preserves ω and h, the same argument as in Lemma 17 gives that x = iω(u, v).

Then 0 = Q(x, x) = ω(u, v)2−|x2|2, and so ω(u, v) = |x2|. Now, if |x2| = 0, then x2 = x1 = 0,

which is impossible since V has real dimension 2. Therefore, we can act on spanR(e1, x)
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by G
(
x,
( x1
|x2|
))
∈ U(1, 1) to see that V is in the orbit of spanR(e1, ω(u, v)(ie1 + e2)) =

spanR(e1, ie1 + e2).

If Q|V has signature (0, 1), then emulate the previous case, acting first by G(u, e2) and

then by G
(
x,
(
|x1|
x2

))
∈ U(1, 1).

The degenate case Λ0,0

Proposition 22. Suppose Q|V ≡ 0. Then V in the orbit of either V +
0,0 = spanR (( 1

1 ), ( ii )) or

V −0,0 := spanR (( 1
1 ), ( i

−i )).

Proof. We can find a basis {u, v} of V such that Q(u) = Q(v) = Q(u, v) = 0, ω(u, v) ≥ 0

(perhaps taking −u), and also |u1| = |u2| = 1 (the first equality is Q(u) = 0, and the

second is achieved by scaling). Then G(u, e1 + e2) ∈ U(1, 1) takes u 7→ e1 + e2 and

v 7→ G(u, e1 + e2) =: x, so V is in the orbit of spanR(e1 + e2, x).

Moreover, since U(1, 1) preserves Q, we get that 0 = Q(u, v) = Q(e1 +e2, x) = Re(x1)−

Re(x2). So then 0 = Q(v) = Q(x) implies | Im(x1)| = | Im(x2)|, i.e. Im(x2) = ± Im(x1).

Therefore, V is in the orbit of either

spanR (( 1
1 ), ( x1x1 )) = spanR (( 1

1 ),Re(x1)( 1
1 ) + Im(x1)( ii )) = spanR (( 1

1 ), ( ii ))

or spanR (( 1
1 ), ( x1x1 )) = spanR (( 1

1 ),Re(x1)( 1
1 ) + Im(x1)( i

−i )) = spanR (( 1
1 ), ( i

−i )) .

Note that the fact V (and G(u, e1+e2) ·V ) has real dimension 2 ensures that Im(x1) 6= 0,

so the final equalities hold. It remains to show that the orbits are distinct. For a contradic-

tion, suppose that G ∈ U(1, 1) is such that G · V +
0,0 = V −0 . Then x := G(e1 + e2) and ix are

in V −0,0. However, all elements of V −0,0 are of the form
( yi
yi

)
, so then x ∈ V −0,0 implies x2 = x1

and ix ∈ V −0,0 therefore implies i = −i, which is false. We conclude the orbits are in fact

distinct.

Remark 23. Notice that in this proof, we realized Λ±0,0 as orbits of the action of the matrix
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subgroup U(2) ∩ U(1, 1), namely {( a 0
0 d ) : |a| = |d| = 1}. Since this subgroup is compact, its

action on Gr2(C2) is proper. Therefore, its orbits Λ±0,0 are compact, hence closed (see [15],

corollary 21.8).

3.2.2 Dimension computations

The dimension of the orbits Λa,b with a+b = 1 are 3, a fact which is shown in Proposition 4.2

of [9]. It was also shown there that Λa,b with a = 0, 2 are open subsets of Gr2(C2), and are

therefore smooth (sub)manifolds of dimension 4. Since the map Λa,b → R given by E 7→ θ,

where θ is the Kähler angle of E, is continuous, the orbits Λθ
a,b are closed in Λa,b.

Therefore, we can use Lee’s theorem 13. In our application, we take G := U(1, 1)∩U(2)

(resp. G := U(1, 1)) [resp. G := SU(1, 1)], and M to be the orbits Λ±0,0 (resp. Λθ
a,b,

a = 0, 2 and θ > 0, and Λθ
1,1) [resp. Λ0

a,b, a = 0, 2]. Since the orbits M are closed they

are submanifolds of Gr2(C2) ([resp. Λa,b, a = 0, 2]), and are in particular G-homogeneous

spaces. So then by Theorem 13, each orbit M is diffeomorphic to G/Gp, where p ∈M is the

representative distinguished in Theorem 15. In particular, the dimension of M is equal to

dimG− dimGp.

• First consider the orbits Λ±0,0. We have already realized these as the orbits of the

smooth action of U(1, 1)∩U(2) ∼= S1×S1. We compute the stabilizer subgroups to be

(U(1, 1) ∩ U(2))V +
0,0

=


u1 0

0 u1

 : |u1| = 1

 ,

and (U(1, 1) ∩ U(2))V −
(0,0)

=


u1 0

0 u1

 : |u1| = 1

 ,

which have dimension 1. Therefore dim Λ±0,0 = 2− 1 = 1.

Remark 24. Note that in U(1, 1), the stabilizers of Λ±0,0 both contain all matrices
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( a bb a ), with a, b ∈ R and a2− b2 = 1. Therefore neither of Λ±0,0 have compact stabilizer.

• Now consider Λ0
a,b, with a = 0, 2. These are the orbits of the action of SU(1, 1), and

in both cases we observe the stabilizer satisfies

SU(1, 1)V 0
a,b

=


u 0

0 u

 : |u| = 1

 = SU(1, 1) ∩ U(2),

which has dimension 1. Therefore dim Λ0
a,b = 3− 1 = 2.

• Third, consider Λ0
1,1. We can compute the stabilizer of V 0

1,1 in U(1, 1) is

U(1, 1)V 0
1,1

=


α γ

β δ

 : α, β, γ, δ ∈ R, |α| = |δ|, |β| = |γ|, and |α|2 − |β|2 = 1

 ,

which has dimension 1. Therefore dim Λ0
1,1 = 4− 1 = 3.

Finally, we compute the dimensions of the orbits of the rest of the Λθ
a,b via the following

proposition:

Proposition 25. The stabilizers of V θ
a,b, θ > 0 in U(1, 1) are

representative stabilizer dimension compact?

V θ
2,0

{(
α+iβ cosh θ β sinh θ
β sinh θ α−iβ cosh θ

)
: α2 + β2 = 1

}
1 Yes

V θ
0,2 the conjugate of the case for V θ

(0,2), θ > 0 1 Yes

V θ
1,1

{(
α+iβ sinh θ β cosh θ
β cosh θ α−iβ sinh θ

)
: α2 − β2 = 1

}
1 No

Proof. The arguments in each case are similar, so we only present the case of V θ
2,0, θ > 0.

Suppose M = ( a bc d ) ∈ U(1, 1)V θ2,0 . Then the condition M · V θ
2,0 = V θ

2,0 is equivalent to the

existence of real α, β, γ and δ such that
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a = α + iβ cosh θ (12)

c = β sinh θ (13)

ia cosh θ + b sinh θ = γ + iδ cosh θ (14)

ic cosh θ + d sinh θ = δ sinh θ. (15)

First, using (12) and (13) and the fact |a|2 − |c|2 = 1, we get α2 + β2 = 1. Now

substitute (13) into (15), cancel the resulting sinh θ (here we use θ > 0)3 and solve for d to

get d = δ − iβ cosh θ. Then |a| = |d| implies δ = ±α. We claim δ = α. First, note if α = 0,

then δ = α = 0 is immediate.

Now for a contradiction, suppose 0 6= α = −δ. Then a = −d, and the condition

ab− cd = 0 (from our characterization of U(1, 1), with the fact c is real) implies ab = −ca.

Using this, we have

iaa cosh θ − ca sinh θ = a(γ + iδ cosh θ) multiplying (14) by a

ia cosh θ − c sinh θ =
a

a
(γ + iδ cosh θ) since M ∈ U(1, 1) implies a 6= 0

iα cosh θ + β cosh2 θ − β sinh2 θ

γ + iδ cosh θ
=
a

a
using (12) and (13)

β + iα cosh θ

γ − iα cosh θ
=
α− iβ cosh θ

α + iβ cosh θ
since α = −δ

Now, as the right side has norm 1, so does the left side. Thus γ = ±β. If γ = β,

then cross-multiplying and comparing the imaginary parts of each side gives 1 = α2 + β2 =

−(α2 + β2) = −1, a contradiction4. On the other hand, if γ = −β, then the left side is −1.

This means α = 0 which contradicts our assumption.

3in the case V θ1,1, we cancel cosh θ, so we do not yet use θ > 0
4in the case V θ1,1, we get 1 = α2 − β2 = −α2 + β2 = −1, and it is here we need θ > 0
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So δ = α. Then d = a, and the condition ab− cd = 0 implies b = c. Therefore necessarily

M =

α + iβ cosh θ β sinh θ

β sinh θ α− iβ cosh θ

 ,

where α2 + β2 = 1. Conversely, it is easily seen any M of this form stabilizes V θ
2,0, so we

are done.

In light of this proposition, for the remaining Λθ
a,b we have dim Λθ

a,b = 4− 1 = 3.

Finally, the classifications of the orbits as symplectic, isotropic, or Lagrangian is easy to

verify working in the respective bases.

4 Non-Constructive Results on Val−∞(C2)U(1,1)

The object of study for the remainder of this work is the space Val−∞(C2)U(1,1) of U(1, 1)-

invariant translation-invariant generalized valuations. Our first important result is

Theorem 26. The space of U(1, 1) generalized translation-invariant valuations on C2 is

finite-dimensional.

The proof is based on the following representation-theoretical result from Aizenbud,

Gourevitch, and Minchenko (AGM) (see Appendices A and B for the relevant definitions):

Theorem 27 (Aizenbud-Gourevitch-Minchenko, [8] ). Let G be a real reductive group, and

H a Zariski closed subgroup with Lie algebra h. If H is a spherical subgroup, then the space

(F ∗)h is finite-dimensional for any admissible irreducible Fréchet representation (π,G(R), F )

of G(R) of moderate growth.

This theorem appears as a corollary to Theorem E in [8], which in turn is derived from

their main result, Theorem D.
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Proof. (of Theorem 26) AGM’s result above immediately implies that Val±,−∞k (C2)U(1,1) is

finite-dimensional provided we can take G = GL(C2), H = U(1, 1), and (π,GL(C2), F ) to

be the representation of GL(C2) by Val±,∞k (C2). So we check these assignments satisfy the

hypotheses.

First, it is clear GL(C2) is a real reductive group, and that U(1, 1) is a Zariski closed

subgroup. To see U(1, 1) is spherical, first appeal to Lemma 45 to see that the subgroup

B of upper-triangular matrices in GL(C2) is a Borel subgroup. Using the fact GL(C2) acts

smoothly and transitively on the space of complex lines PC(C2), and the stabilizer of [1 : 0]

is precisely B, Theorem 13 gives an equivariant diffeomorphism GL(C2)/B ∼= PC(C2). Since

in Proposition 12, we saw U(1, 1) acts on PC(C2) with finitely many orbits, we conclude it

is a spherical subgroup of GL(C2).

Second, Val±,∞k (C2) is shown to be an admissible irreducible Fréchet representation of

GL(C2) of moderate growth in Appendix A.2. Hence we may apply Theorem 27 to conclude

that Val±,−∞k (C2)U(1,1) is finite-dimensional. McMullen’s decomposition lets us make the

same conclusion for Val−∞(C2)U(1,1).

In light of Theorem 26, each Val−∞k (C2)U(1,1) for k ∈ {0, 1, 2, 3, 4} is finite-dimensional.

As we stated Section 1.1,

• Val0(C2) is one-dimensional and spanned by the Euler characteristic.

• Hadwiger showed Val4(C2) is one-dimensional and spanned by a Lebesgue measure.

Therefore, it is easy to see Val−∞k (C2)U(1,1) is one-dimensional for k = 0 and 4. Now, since

multiplication by −1 is in U(1, 1), any U(1, 1)-invariant generalized valuation is necessarily

even. In other words, Val−∞k (C2)U(1,1) = Val+,−∞k (C2)U(1,1). This fact allows us to use

Alesker’s Fourier transform (Section 1.4.4) to get an isomorphism
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Val−∞1 (C2)U(1,1) ∼= Val−∞3 (C2)U(1,1).

Therefore dim Val−∞1 (C2)U(1,1) = dim Val−∞3 (C2)U(1,1). This leaves only two cases untreated,

namely

Val+,−∞1 (C2)U(1,1) and Val+,−∞2 (C2)U(1,1).

5 The Space Val−∞1 (C2)U(1,1)

Our goal is to show Val−∞1 (C2)U(1,1) is 2-dimensional. First, note that any U(1, 1)-invariant

generalized valuation is necessarily O(2, 2)-invariant, when we view C2 as R4. In [9], Bernig

and Faifman characterized (among others) the space Val−∞3 (R4)O(2,2) = Val+,−∞3 (R4)O(2,2).

Since we have the Alesker-Fourier transform, such a characterization also describes the 1-

homogeneous case. While their result is in Section 5 of [9], and uses the theory of currents,

we use their work to give another view of the characterization via the Klain map. First, we

take their Proposition 4.3:

Proposition 28 (Bernig-Faifman). The dimension of the space of O(p, q)-invariant gener-

alized sections of Klain’s bundle Kk equals the number of open O(p, q)-orbits in Grk(Rn). A

basis of Γ−∞(Grk(Rn), Kk)O(p,q) is given by the continuous sections κa defined by

κa(E)(v1 ∧ · · · ∧ vk) :=


| det(Q(vi, vj))

k
i,j=1|1/2 E = span(v1, . . . , vk) ∈ Λa,k−a(k)

0 otherwise

,

where max(0, k − q) ≤ a ≤ min(k, p), and Q is the non-degenerate bilinear form corre-
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sponding to O(p, q).

In particular, Γ−∞(Gr3(R4), K3)O(2,2) = span(κ1, κ2). Since the Klain map gives an

injection

Val+,−∞3 (R4)O(2,2) → Γ−∞(Gr3(R4), K3)O(2,2),

we find dim Val+,−∞3 (R4)O(2,2) ≤ 2. Bernig and Faifman then gave two O(2, 2)-invariant

generalized even 3-homogeneous valuations φ1,0 and φ0,1 whose Klain functions are −8
3
πκ1

and −8
3
πκ2 (see [9], Proposition 8.1; note φ1,0 and φ0,1 were defined via invariant Crofton

distributions). Therefore, the dimension of the space of O(2, 2)-invariant generalized 1 or

3-homogeneous valuations on R4 is exactly 2.

In the U(1, 1)-invariant case, the above implies dim Val+,∞1 (C2)U(1,1) ≤ 2. We show it is

exactly 2, which means any U(1, 1)-invariant generalized valuation is also O(2, 2)-invariant.

First, we need Lemma A.1 from [9]:

Lemma 29. Let G be a group acting on a manifold X equipped with a G-equivariant vector

bundle E, and let Z be a closed orbit of G. For α ≥ 0, let Fα be the bundle over Z defined

by

Fα|E := Symα(NEZ)⊗Dens∗(NEZ)⊗ E|E, E ∈ Z.

If dim Γ∞(Z, Fα)G = 0 for all α ≥ 0, then dim Γ−∞Z (X, E)G = 0.

We do not prove this lemma here, but note that according to Bernig and Faifman, it is

a well-known result. Using this lemma, we now prove

Proposition 30. There are no non-trivial U(1, 1)-invariant generalized sections of Klain’s

bundle supported on the closed orbit Z = Λ0,0(1).
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Proof. Note we have

Fα|E := Symα(NEZ)⊗Dens∗(NEZ)⊗Dens(E), E ∈ Z.

In light of Lemma 29, it suffices to show (Fα|E)U(1,1)E = 0, where U(1, 1)E := stab(E) ⊆

U(1, 1).

First we describe the normal space NEZ for E ∈ Λ0,0(1). Since Q is degernerate on E, we

have E = E0 := E ∩ EQ, where EQ is the Q-orthogonal complement of E. Then according

to Proposition 4.2 of [9], there is an O(2, 2) (hence U(1, 1))-equivariant isomorphism NEZ =

NEΛ0,0(1) = Sym2E∗.

Now we find an element of U(1, 1)E that acts on E by multiplication by nonzero λ 6= ±1.

Since NEZ = Sym2E∗, any such element acts on Fα|E by λ−2αλ−2λ−1 6= 1, which implies

(Fα|E)U(1,1)E = 0 as desired. Take

Mλ :=

α γ

γ α

 ∈ U(1, 1)

where (α, γ) is the unique solution to α + γ = λ and α2 − γ2 = 1. Then in fact

Mλ ∈ U(1, 1)[1:1], and Mλ acts on elements of [1 : 1] as multiplication by λ. Therefore,

writing E = g · [1 : 1], we have gλ := Mλg
−1 ∈ U(1, 1)E acting on E as multiplication by λ.

This completes the proof.

Finally, we use Proposition 30 to get our main result, which is that

Theorem 31. The space of U(1, 1)-invariant 1-homogeneous generalized valuations is 2-

dimensional, and any such valuation is also O(2, 2)-invariant.

Proof. Recall we have an injection
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Val+,−∞1 (C2)U(1,1) → Γ−∞(Gr1(C2), K1)U(1,1), (16)

so that the dimension of the range bounds above that of the domain. Since the Klain

bundle is one-dimensional, so is the space of U(1, 1)-invariant generalized sections supported

over the open orbits Λ0,1(1) and Λ1,0(1), respectively (that these are the open orbits is due

to Proposition 12). As Proposition 28 already gives the section κ0 over Λ0,1(1) and κ1 over

Λ1,0(1), if we have some s ∈ Γ−∞(Gr1(C2), K1)U(1,1) independent of {κ0, κ1}, then we must

necessarily get an invariant section supported on Λ0,0(1). But by Proposition 30, there

is no such section. Therefore, we conclude Γ−∞(Gr1(C2), K1)U(1,1) = span(κ0, κ1), and in

particular the dimension of U(1, 1)-invariant generalized sections of Klain’s bundle is 2.

This means dim Val+,−∞1 (C2)U(1,1) ≤ 2. Since as we discussed earlier, Bernig and Faifman

showed dim Val+,−∞1 (R4)O(2,2) = 2, and we have Val+,−∞1 (R4)O(2,2) ⊆ Val+,−∞1 (C2)U(1,1), we

conclude these spaces are the same. Noting any U(1, 1)-invariant generalized valuation is

necessarily even completes the proof.

By using the Alesker-Fourier transform, we also have dim Val−∞3 (C2)U(1,1) = 2, and any

U(1, 1)-invariant 3-homogeneous generalized valuation is necessarily O(2, 2)-invariant.

6 The Cover of Gr2(C2) by S2 × S2

Our next goal is to describe the space Val−∞2 (C2)U(1,1). As opposed to the 1-homogeneous

case, where we used the Klain map, we will instead use the Crofton map

Γ−∞(Gr2(C2), C2)U(1,1) → Val+,−∞2 (C2)U(1,1) = Val−∞2 (C2)U(1,1).

Since the Crofton map is surjective, to find U(1, 1)-invariant 2-homogeneous generalized
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valuations, we will first find U(1, 1)-invariant Crofton distributions. Since these are general-

ized sections of a bundle over Gr2(C2), we will use the convenient fact that Gr2(C2) is double

covered by S2 × S2.

6.1 Defining the Cover

We describe how S2 × S2 (viewed inside R3×R3) covers Gr2(C2). Let {ei}4
i=1 denote the

standard basis of R4, and set the usual Euclidean structure P on C2. For (z, w) ∈ S2 × S2,

let

x12 :=
w1 + z1

2
x34 :=

w1 − z1

2
x13 := −w2 + z2

2

x24 :=
w2 − z2

2
x14 :=

w3 + z3

2
x23 :=

w3 − z3

2
.

Then set

τ :=
∑

1≤i<j≤4

xijei ∧ ej.

We say that (z, w) generates τ . This is a simple unit 2-vector, and so defines a 2-plane

E := {v ∈ R4 | v ∧ τ = 0} in R4. Conversely, given E ∈ Gr2(C2), take a P -orthonormal

basis {u, v}. Then τ := u ∧ v ∈
∧2 R4 is a simple unit 2-vector generated from some

(z, w) ∈ S2 × S2, and this (z, w) corresponds to E in the double cover. We also will say τ

corresponds to E.

Any bilinear form A on R4 extends to one on
∧2 R4 by
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A(u ∧ v, x ∧ y) :=

∣∣∣∣∣∣∣
A(u, x) A(u, y)

A(v, x) A(v, y)


∣∣∣∣∣∣∣ .

Therefore, the relevant forms P , Q, and ω all extend to
∧2 R4. In particular, note that

Q(e1 ∧ e3) = Q(e2 ∧ e4) = 1

Q(e1 ∧ e2) = Q(e1 ∧ e4) = Q(e2 ∧ e3) = Q(e3 ∧ e4) = −1.

6.2 The Action of U(1, 1) on S2 × S2

Using the complex structure J on R4, we can view C2 ∼= R4 and also GL(C2) ≤ GL(R4).

Under this identification, the action of M ∈ GL(R4) on E ∈ Gr2(C2) satisfies

M · E := {Mv ∈ R4 | v ∧ τ = 0}

= {u ∈ R4 |M−1u ∧ τ = 0}

= {u ∈ R4 | u ∧Mτ = 0}.

Note the action of M on τ is given by

Mτ :=
∑
k<j

(∑
i<j

xijM
kl,ij

)
ek ∧ el,

where Mkl,ij is the determinant of the 2 × 2 minor of M including rows k and l and

columns i and j.

Suppose (z, w) generates the unit 2-vector τ and corresponds to the 2-plane E. We
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define M · (z, w) to be (z′, w′) ∈ S2 × S2, where (z′, w′) generates E. Of course, this is only

well-defined up to sign. In the case M ∈ O(4), the fact M preserves P means Mτ itself is

a unit 2-vector. Therefore, by expanding Mτ =
∑

i<j x
′
ijei ∧ ej, we can reconstruct (z′, w′)

explicitly in terms of the x′ij, and hence the M and (z, w), by solving the linear system.

Otherwise, Mτ is not a unit 2-vector. In this case, to find M · (z, w), we must first take

a P -orthonormal basis {u′, v′} of M · E, and then extract (z′, w′) from the unit 2-vector

τ ′ := u′ ∧ v′. Beginning with a Q-orthonormal basis {u, v} of M · E, we can always extract

{u′, v′} using Gram-Schmidt orthonormalization.

According to the polar decomposition in Proposition 9, we can write any M ∈ U(1, 1) as

M =

u1 0

0 u2

 · 1√
1− |α|2

 1 −α

−α 1

 , (17)

for |u1| = |u2| = 1 and |α| < 1. Note here that K := U(1)×U(1) = U(2)∩U(1, 1) is the

maximal compact subgroup of U(1, 1). Therefore we have U(1, 1) = KH, where H is the

collection of matrices of the form A = 1√
1−|α|2

(
1 −α
−α 1

)
for |α| < 1. Since K ≤ U(2) ≤ O(4),

the above discussion allows us to compute that the action of U on (z, w) satisfies U · (z, w) =

(z′, w′), where

z′ =


z1 Re(u1u2)− z3 Im(u1u2)

z2

z1 Im(u1u2) + z3 Re(u1u2)

 , w′ =


w1 Re(u1u2)− w3 Im(u1u2)

w2

w1 Im(u1u2) + w3 Re(u1u2)

 . (18)

We see that U rotates both the z and w copies of S2 independently around the z2 and w2

axes; orbits of K are of the form S2 × S2 ∩ {z2 = c1, w2 = c2} for constants c1, c2 ∈ [−1, 1].

Furthermore, multiplication by i satisfies i · (z, w) = ((−z1, z2,−z3), w), so the complex

planes are covered by (0,±1, 0)× S2.
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6.3 The Function cos 2τ

In Section 2.3, we defined the function τ : Grk(Rn) → [0, π/2] by cos 2τ(E) := detM(E),

where M(E) was the matrix with entry M(E)ij := Q(ui, uj), where {ui} is a P -orthornormal

basis of E. The following lemma describes the lift of cos 2τ to S2 × S2.

Lemma 32. Suppose (z, w) ∈ S2×S2 sits over the 2-plane E ∈ Gr2(C2) with P -orthonormal

basis {u, v}. Then

cos 2τ(E) = z2
2 + w2

2 − 1. (19)

Proof. This is a computation:

cos 2τ(E) =

∣∣∣∣∣∣∣
Q(u, u) Q(u, v)

Q(v, u) Q(v, v)


∣∣∣∣∣∣∣ by definition

= Q(u ∧ v, u ∧ v)

= x2
13 + x2

24 − x2
12 − x2

14 − x2
23 − x2

34

= z2
2 + w2

2 − 1.

6.4 The Kähler angle

Consider a non-degenerate plane E ∈ Gr2(C2). The definition of its Kähler angle θ is

contingent on the signature of Q|E. In any case, however, θ is uniquely determined by

ω(u, v)2, where {u, v} is a Q-orthonormal basis of E. We want to describe ω(u, v)2 (and

hence θ) in terms of the point (z, w) ∈ S2 × S2 over E.

Lemma 33. Let (z, w) cover the 2-plane E with Q-orthonormal basis {u, v}. Then
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ω(u, v)2 = P (u, u)P (ṽ, ṽ)w2
2, (20)

where ṽ := v − P (u,v)
P (u,u)

u.

Proof. Using the Gram-Schmidt process, let

ũ := u and ṽ := v − P (u, v)

P (u, u)
u

u′ :=
ũ√

P (ũ, ũ)
and v′ :=

ṽ√
P (ṽ, ṽ)

.

Then {u′, v′} is a P -orthonormal basis for E, and

τ = u′ ∧ v′ =
∑
i<j

xijei ∧ ej =
1√

P (u, u)P (ṽ, ṽ)
u ∧ v

is the unit 2-vector generated by (z, w) and corresponding to E. Since ω is a sympleptic

form, we have

ω(ũ, ṽ) = ω(u, v), which implies P (u, u)P (ṽ, ṽ)ω(u′, v′)2 = ω(u, v)2.

Now compute
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ω(u′, v′)2 =

∣∣∣∣∣∣∣
 0 ω(u′, v′)

ω(v′, u′) 0


∣∣∣∣∣∣∣ since ω is symplectic

=

∣∣∣∣∣∣∣
 0 −Q(u′, Jv′)

−Q(v′, Ju′) 0


∣∣∣∣∣∣∣ since Q(u, Jv) = ω(u, v)

= −Q(u′ ∧ v′, Ju′ ∧ Jv′) by definition of Q on
2∧
R4

=
∑
i<j
k<l

xijxklQ(ei ∧ ej, Jek ∧ Jel) expanding in the basis

= −x12x34 + x2
13 − x14x23 − x23x14 + x2

24 − x34x12 evaluating

= w2
2 by the definition of xij

Therefore ω(u, v)2 = P (u, u)P (ṽ, ṽ)w2
2, as desired.

In the case of planes of signature (1, 1), recall the Kähler angle is defined by sinh θ =

ω(u, v), where θ ≥ 0 and u, v are Q-orthonormal such that ω(u, v) ≥ 0. So then in particular,

planes E from Λ0
1,1 necessarily corrospond to (z, w) ∈ S2× S2 with w2 = 0. This is useful in

our next exercise, which is realizing the Lagrangian planes in Gr2(C2) as a subset of S2×S2.

6.5 The Lagrangian planes

The set of Lagrangian planes L in Gr2(C2) is the union L = Λ+
0,0 ∪ Λ0

1,1. Now, Λ+
0,0 has

representative V +
0,0, which we can compute lifts to

((
0
±1
0

)
,
(

0
0
∓1

))
in S2 × S2. Then, since

the orbit Λ+
0,0 was given as the orbit of the action of K ≤ U(1, 1), we can use 18 (i.e. the fact

K independently rotates each copy of S2 about the second axis) to find that Λ+
0,0 lifts as

Λ+
0,0 → {(z, w) ∈ S2 × S2 | |z2| = 1, and w2 = 0}.
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As we saw in the previous section, the other Lagrangian orbit Λ0
1,1 contains only those

non-degenerate planes corresponding to (z, w) ∈ S2×S2 with w2 = 0. Since the case |z2| = 1

corresponds to the degenerate orbit, we expect to find that

Proposition 34. The orbit Λ0
1,1 lifts as

Λ0
1,1 → {(z, w) ∈ S2 × S2 : |z2| 6= 1, and w2 = 0}.

Proof. We prove this directly. The orbit has representative V 0
1,1 = spanR(e1, e2). Then

A · V 0
1,1 = spanR (( 1

−α ), ( −α1 )) .

Using the Gram-Schmidt process, a P -orthonormal basis for A · V 0
1,1 is

{u′, v′} =

{
ũ√

P (ũ, ũ)
,

ṽ√
P (ṽ, ṽ)

}

=

 1√
1 + |α|2

 1

−α

 ,
1√

(1 + |α|2)(1 + λ2)− 4λReα

 λ− α

1− λα


 ,

where λ := 2 Reα
1+|α|2 . First, note that

P (ũ, ũ)P (ṽ, ṽ) = (1 + |α|2)2 − 4(Reα)2.

We find that the corresponding τ ′ to A · V 0
1,1 using the orthonormal basis {u′, v′} is
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√
P (ũ, ũ)P (ṽ, ṽ)τ ′ = v1 ∧ v2 = (1− (Reα)2)e1 ∧ e2 + (Imα)2e3 ∧ e4

+ Imαe1 ∧ e3 + Imαe2 ∧ e4

+ (−Reα Imα)e1 ∧ e4 + (−Reα Imα)e2 ∧ e3.

Then

z′ =
1√

P (ũ, ũ)P (ṽ, ṽ)


1− |α|2

−2 Imα

0



w′ =
1√

P (ũ, ũ)P (ṽ, ṽ)


1− (Reα)2 + (Imα)2

0

−2 Reα Imα

 .

As expected, (z′, w′) ∈ S2× S2, so A · V 0
1,1 = (z′, w′). Since the action of U on any (z, w)

simply rotates both spheres independently around the z2 and w2 coordinate, we conclude

the orbit Λ0
1,1 lifts to

Λ0
1,1 = {(z, w) ∈ S2 × S2 : |z2| 6= 1, and w2 = 0}.

Therefore, the set of Lagrangian planes is L = Λ+
0,0∪Λ0

1,1 = {(z, w) ∈ S2×S2 : w2 = 0}.

49



7 A Lower Bound for the Dimension of Val−∞2 (C2)U(1,1)

7.1 The Indefinite Orthogonal Case

Our first step to bounding dim Val−∞2 (C2)U(1,1) below is to view Val−∞2 (R4)O(2,2) as inside

Val−∞2 (C2)U(1,1). As in the 1-homogeneous case, Bernig and Faifman in [9] characterized the

former space. In Section 5 of [9], using the theory of currents, they proved their Theorem 2,

which implies dim Val−∞2 (C2)O(2,2) = 2. They then defined several Crofton distributions. For

Re(λ) > 0, and (a, b) with a, b non-negative and a + b = 2, define the generalized function

m
(λ)
a,b ∈ C−∞(Gr2(C2)) by

ϕ 7→
∫

Λa,b(2)

ϕ(E)| cos 2τ(E)|λdE.

Bernig and Faifman showed, in their Proposition 8.5, that

Proposition 35. (a) Each m
(λ)
a,b extends meromorphically to C. If a = 0, 2, then m

(λ)
a,b has

simple poles at λ = −m/2 for m ≥ 2. If a = 1, then m
(λ)
a,b has simple poles at the

λ ∈ −N. The generalized function m
(λ)
− := m

(λ)
2,0 −m

(λ)
0,2 has poles at λin− N.

(b) m0,0 := Resλ=− 5
2
m

(λ)
2,0 is an O(2, 2)-invariant Crofton distribution supported on Λ0,0(2).

(c) m+ := m
(−5/2)
1,1 is an O(2, 2)-invariant Crofton distribution supported on Λ1,1(2).

(d) m− := m
(−5/2)
− is an O(2, 2)-invariant Crofton distribution supported on Λ2,0(2) ∪

Λ0,2(2).

Invariance follows from Lemma 11. Well-definedness involves working on the double cover

S2×S2 of Gr2(C2). They then computed the Klain functions of the valuations corresponding

to m0,0, m+, and m−, denoted φ0,0, φ+, and φ−, respectively. Ultimately, they found that

Theorem 36. The Klain functions are given by:
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Valuation Klain function

φ−
1
3
(κ2 − κ0)

φ+ −1
3
κ1

φ0,0
1

3π
κ1.

The computations of the Klain functions spans the latter half of Section 8 in [9]. In

particular, since by Theorem 2 in [9] we already know dim Val−∞2 (R4)O(2,2) = 2, then we con-

clude any O(2, 2)-invariant 2-homogeneous generalized even valuation has a Klain function

in the span of {κ1, κ2 − κ0}.

The relevence to U(1, 1) invariance is as follows: first, Val2(R4)O(2,2) inside Val2(C2)U(1,1)

immediately implies dim Val2(C2)U(1,1) ≥ 2. Furthermore, if we find some φ ∈ Val2(C2)U(1,1),

then to check φ is not O(2, 2)-invariant (and hence that the dimension of Val2(C2)U(1,1) is

larger than 2) it suffices to show its Klain function is not in span(κ1, κ2− κ0). Equivalently,

if φ corresponds to the U(1, 1)-invariant Crofton distribution mφ, one must show the cosine

transform T2,2mφ is not in span(κ1, κ2 − κ0).

7.2 Proving dim Val−∞2 (C2)U(1,1) ≥ 3

We construct a U(1, 1)-invariant generalized 2-homogeneous valuation that is not O(2, 2)-

invariant. First, we find a U(1, 1)-invariant Crofton distribution, then show invariance by

using its Cosine transform (i.e. the Klain function of the corresponding valuation). By

Lemma 11, a U(1, 1)-invariant Crofton distribution of degree 2 over Gr2(C2) is given by a

generalized function f ∈ C−∞(Gr2(C2)) that transforms by M∗f = ψ
−(n+1)/2
M f for all M ∈

U(1, 1). In light of this identification, define the generalized function m
(λ)
L ∈ C−∞(Gr2(C2)),

for λ > 0, by

ϕ 7→
∫

L

ϕ(E)| cos 2τ(E)|λdE.
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We claim m
(λ)
L gives rise to a Crofton distribution.

Proposition 37. (a) The generalized function m(λ) extends meromorphically to C, and

has simple poles at λ ∈ −N.

(b) The generalized function m(−5/2) corresponds to a U(1, 1)-invariant Crofton distribution

supported on the Lagrangian planes L .

Proof. (a) For ϕ ∈ C∞(Gr2(C2)), let ϕ̃ denote its lift to the double cover S2 × S2. Let

dU denote the invariant probability measure on the maximal compact subgroup K ≤

U(1, 1). Define

Φ(z2, w2) :=

∫
k

ϕ̃(U · (z, w))dU, z = (∗, z2, ∗), w = (∗, w2, ∗) such that z, w ∈ S2.

As K rotates the z and w spheres in S2 × S2 independently of eachother around the

z2 and w2 axes, Φ is well-defined.5 Then we may express integration across m
(λ)
L by,

for some constant c > 0,

〈m(λ)
L , ϕ〉 = c

∫ 1

−1

(1− z2
2)λΦ(z2, 0)dz2. (21)

Note that in writing this equality, we used the facts that if (z, w) ∈ L , then w2 = 0,

and also if (z, w) covers E, then cos 2τ(E) = z2
2 + w2

2 − 1 (see Section 6.3). Therefore,

it suffices to show there is a meromorphic extension of m̃
(λ)
L , defined on [−1, 1] by

Φ 7→
∫ 1

−1
(1− x2)λΦ(x)dx.

Note that near −1 (resp 1), the singularity of (1 − x2)λ behaves like (1 + x)λ (resp.

(1− x)λ). Therefore, the meromorphic extension of m̃
(λ)
L comes from that of the well-

5Put another way, we view K = U(1)×U(1), where the left (resp. right) copies of U(1) are the stabilizers
in U(2) of z2 (resp. w2), and dU = dU1dU2, where dUi is the invariant probability measure on U(1).
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known generalized function xλ. As xλ is meromorphic on C with poles at λ ∈ −N, the

claim follows.

(b) We may now consider m
(−5/2)
L . Recall Lemma 11 to see that U(p, q)-invariance follows

if we can show M∗m
(−5/2)
L = ψ

−5/2
M m

(−5/2)
L for all M ∈ U(p, q). In general, we compute

〈M∗m
(λ)
L , ϕ〉 = 〈m(λ)

L , |ψM−1|5/2ϕ ◦M−1〉 by definition of the pullback

=

∫
L

|ψM−1(E)|5/2ϕ ◦M−1(E)| cos 2τ(E)|λdE by definition of m
(λ)
L

=

∫
L

| cos 2τ(ME)|λϕ(E)dE changing variables

=

∫
L

ψλM | cos 2τ(E)|λϕ(E)dE by Proposition 10

= 〈ψλMm
(λ)
L , ϕ〉

Note we also used that L is invariant under action of U(1, 1). So then M∗m
(λ)
L =

ψλMm
(λ)
L , and we can apply Lemma 11 in the case λ = −5/2 to conclude m

(−5/2)
L

corresponds to a U(1, 1)-invariant Crofton disribution.

So we have a U(1, 1)-invariant Crofton distribution m
(−5/2)
L . Denote the corresponding

valuation under the Crofton map by φL. We now prove

Proposition 38. The Klain function of φL is linearly independant from κ1 and κ2 − κ0.

Note an immediate consequence is

Theorem 39. The valuation φL is not O(2, 2)-invariant, and so dim Val−∞2 (C2)U(1,1) ≥ 3.

To prove Proposition 38, we will compute Kl2(φL) at various points. A priori, Kl2(φL)

is a generalized section of Klain’s bundle, and so it may not make sense to compute the

Klain function at a given 2-plane E. However, such a computation is well-defined at any E
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where we can show the Klain function is smooth. At such planes, we use Lemma 8 to say

Kl2(φL)(E) = 〈mL, | cos(E, ·)|〉. This motivates the necessity of our next proposition. Take

E0 := V 0
2,0 = span(e1, e3) ∈ Λ2,0(2). We claim

Proposition 40. The generalized Klain function Kl2(φL) is smooth in some neighbourhood

of E0.

In fact, it is possible to show Kl2(φL) is smooth at all E ∈ Gr2(C2). The proof relies on

fact that the wavefront sets of mL and | cos(E, ·)| are disjoint (c.f. Proposition 3.16 in [9]).

A complete explanation will be given in a later version of this project. For now, we assume

the result so we may prove Proposition 38.

Proof of Proposition 38. For a contradiction, suppose Kl2(φL) = ακ1 + β(κ2 − κ0). By

construction, the Klain function Kl2(φL) does not differentiate planes of signature (2, 0)

from those of signature (0, 2). Therefore, we must have β = 0, and so Kl2(φL) = ακ1. To

get a contradiction, we show Kl2(φL)(E0) 6= 0, a goal which makes sense due to Proposition

40. By Lemma 8, we have Kl2(φL)(E0) = 〈mL, | cos(E0, ·)|〉, so we first compute the cosine.

Given F ∈ Gr2(C2), write F = span(u, v), where {u, v} is an orthonormal basis with

respect to the Euclidean structure P . The orthogonal projection of C2 onto F is then given

by PrF = P (u, ·)u+ P (v, ·)v. In particular, the matrix of this projection as a map E0 → F

(with respect to the basis {e1, e3} of E0 and {u, v} of F ) is ( u1 u3v1 v3 ). Therefore, the volume of

the orthogonal projection onto F of the unit square S0 in E0 is u1v3− u3v1. In other words,

| cos(E0, F )| = vol2(PrF (S0))

vol2(S0)
= u1v3 − u3v1. (22)

The plane E0 lifts to
((

0
1
0

)
,
(

0
1
0

))
in the double cover S2 × S2. Then, supposing (z, w)

covers F , equation (22) means the cosine function lifts to S2 × S2 by
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| cos(E0, (z, w))| = |z2 + w2|
2

.

Thus we have computed the cosine of the angle between E0 and F . Now, using Proposi-

tion 40, Lemma 8, and equation 21 with the fact Φ(z2, w2) = |z2+w2|
2

, we find

Kl2(φL)(E0) = 〈mL, | cos(E0, ·)|〉 by Proposition 40 and Lemma 8

=
c

2

∫ 1

−1

(1− z2
2)−(5/2)|z2|dz1 by 21 and the definition of mL

=
c

2
〈m̄(−5/2)

L , |x|〉 recalling m̄L from the proof of Proposition 37

Recall we defined m̄
−(5/2)
L by meromorphically extending m̄

(λ)
L , where λ > 0. Therefore,

to compute 〈m̄(−5/2)
L , |x|〉, it suffices to compute m

(λ)
L at |x| for λ > 0 large, and then evaluate

the resulting expression in λ at λ = −5/2. We have, for λ > 0,

〈m̄L
(λ), |x|〉 =

∫ 1

−1

(1− x2)λ|x|dx by definition of m̄
(λ)
L

= 2

∫ 1

0

(1− x2)λxdx since the integrand is even

=

∫ 1

0

(1− u)λdu changing variables x2 = u

=
1

λ+ 1
.

Hence, setting λ = −5/2, we can conclude

Kl2(φL)(E0) = −2

3
6= 0,
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as desired. This completes the proof.

8 Conclusion and Next Steps

Our goal for this project was to characterize Val−∞(C2)U(1,1), the space of U(1, 1) and

translation-invariant generalized convex valuations on C2. We achieved three results:

• The space Val−∞(C2)U(1,1) is finite-dimensional (Theorem 26)

• Every 1-homogeneous U(1, 1)-invariant generalized valuation is also O(2, 2)-invariant

(Theorem 31. Therefore, Val−∞1 (C2)U(1,1) has been described completely in [9]

• There exists a 2-homogeneous U(1, 1)-invariant generalized valuation that is notO(2, 2)-

invariant (Theorem 39). Therefore dim Val−∞2 (C2)U(1,1) ≥ 3.

Since the spaces of 0 and 4-homogeneous generalized valautions are spanned by the Euler

characteristic and a Lebesgue measure, respectively, and the Alesker-Fourier transform gives

an isomorphism Val−∞3 (C2)U(1,1) ∼= Val−∞1 (C2)U(1,1), all that remains is to find the dimension

of the space of 2-homogeneous U(1, 1)-invariant generalized valuations.

A first step in this goal is to carry out the following construction. Recalling the definition

of mL as a Crofton distribution given by integrating over the Lagrangian orbits L , we define

another family of distributions, m
(λ)
C , given by integrating over the complex orbits C ; that

is, for λ > 0,

〈m(λ)
C , ϕ〉 :=

∫
C

ϕ(E)| cos 2τ(E)|λdE, ϕ ∈ C∞(Gr2(C2)).

In the double cover S2 × S2 over Gr2(C2), we found in Section 6.2 that C lifts to

(0,±1, 0) × S2. Using this fact, we can prove m
(λ)
C extends meromorphically to λ ∈ C.

Then as in Proposition 37, it follows that mC := m
−(5/2)
C is a U(1, 1)-invariant Crofton dis-

tribution. Once again, its wavefront set can be shown to be disjoint from that of | cos(E, ·)|,
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and so we can then proceed as in Proposition 40 to conclude Cr2(mC) is a 2-homogeneous

U(1, 1)-invariant generalized valuation that is not O(2, 2)-invariant. Showing T2,2mC is in

fact linearly independent from {κ1, κ2 − κ0, T2,2mL} will give dim Val−∞2 (C2)U(1,1) ≥ 4. The

details of this construction will appear in a later version of this report.

A Representation Theory, the G̊arding Topology, and

Valuations

Here we give a definition and some relevant facts about the G̊arding topology on Val∞(V ).

Our reference throughout will be [19], Wallach’s Real Reductive Groups I. Let G be a finite-

dimensional Lie group with finite number of connected components, and let (π,G,H) be a

continuous representation of G in a Fréchet space H, in the sense that the map G×H → H

given by (g, v) 7→ π(g)v is continuous. We interchangeably write the action of G on H by

π(g)v = g · v. If, for v ∈ H, the map G → H given by g 7→ g · v is smooth, we say v is a

smooth vector in H. Denote the set of smooth vectors in H by H∞. G̊arding proved that

Theorem 41 (G̊arding). The set H∞ is dense in H.

Let g be the Lie algebra of G. If X ∈ g, we set

π(X)v :=
d

dt

∣∣∣
t=0
π(exp(tX))v.

In this way, π(X) maps H∞ to itself, and using Taylor’s theorem we can show

π([X, Y ]) = π(X)π(Y )− π(Y )π(X) for all X, Y ∈ g.

This means (π, g, H∞) is a representation of g. Now consider the universal enveloping
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algebra U(g) of g, defined by taking the quotient of the tensor algebra T (g) over g by the

relation X ⊗ Y − Y ⊗ X = [X, Y ]. A basis for U(g) is Xm1
1 · · ·Xmn

n , where the Xi are a

basis for g. In the context of Lie algebras, U(g) can be identified with the space of left-

invariant differential operators on G. By the universal mapping property of U(g), we get

that π extends to U(g). If D ∈ U(g), then set ρD,k(v) := ‖π(D)v‖k for v ∈ H∞, where ‖ · ‖k

are the semi-norms that define the topology on F . The ρD,k are semi-norms, and we give

H∞ the topology induced by these semi-norms. This is the G̊arding topology. We have

Theorem 42. H∞ is a Fréchet space, and (π,G,H∞) is a smooth representation of G.

A Fréchet representation (π,G, F ) is called a smooth representation of G if F = F∞

as sets. Now let G be a real reductive Lie group. Then imbed G into GLN(R) for some N

as a closed subgroup invariant under transposition via an imbedding p. We define a norm

| · | on G by

|g| := max{‖p(g)‖, ‖p(g−1)‖},

where ‖ · ‖ denotes the operator norm on RN . This allows us to make the following

definition: we say a smooth representation has moderate growth if for each continuous

semi-norm λ on F , there exists a continuous semi-norm νλ on F and real constant dλ such

that

λ(g · v) ≤ |g|dλνλ(v) for all g ∈ G, v ∈ F.

The relevant result for representations with moderate growth is

Theorem 43. If (π,G,H) is a continuous representation in a Banach space H, then (π,G,H∞)

has moderate growth.
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We say a Fréchet representation (π,G,H) of a real reductive Lie group G is admissible

if its restriction to a maximal compact subgroup K of G contains an isomorphism class of

any irreducible representation of K with at most finite multiplicity.

A.1 An Example of the G̊arding Topology

Consider the case G = (R,+) and H = C(R), with the toplogy generated by the norms

‖f‖k := sup{|f(x)| : x ∈ [−k, k]}. Then H is a Fréchet space. The action of G on H is

defined to be x · f := f(· − x), which is continuous. It is not hard to see H∞ = C∞(R), the

set smooth functions.

The Lie algebra of R is the one-dimensional space spanR( ∂
∂x

). The universal enveloping

algebra is then spanned by the differential operators ∂
∂x

for n ∈ Z≥0. Given D = ∂n

∂xn
, we

have

π(D)f =
d

dt

∣∣∣
t=0
π(exp(tD))f =

d

dt

∣∣∣
t=0

(
1 + t

∂n

∂xn
+ o(t2)

)
f = f (n),

where f (n) is the n-th derivative of f . So then, the semi-norms that generate the G̊ading

topology on C∞(R) are ρD,k(f) = ‖f (n)‖k = sup{|f (n)(x)| : x ∈ [−k, k]}. According to the

theory described above, we get

• C∞(R) is dense in C(R), when equipped with the subspace topology.

• C∞(R) is a Fréchet space with the topology given by the semi-norms ρD,k.

• C∞(R) is a smooth representation of R.

A.2 Intersection with Valuation Theory

Our discussion of the G̊arding topology is necessary because is gives us the language and

tools to prove the following lemma, which is used to prove Theorem 26.
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Lemma 44. Let V be a n-dimensional real vector space. For each 0 ≤ k ≤ n, the space

Val±k (V ) is a smooth admissable Fréchet representation of GL(V ) of moderate growth.

Proof. By Alesker’s irreducibility theorem, Val±k (V ) is a continuous irreducible representa-

tion of GL(V ) in a Banach space. Therefore, using Theorems 42 and 43, we find by its

construction that Val±,∞k (V ), is a smooth Fréchet representation of moderate growth. Ac-

cording to Alesker, Remark 1.2.4 in [4], the representation Val(V ) is admissible, and this

implies the same holds for Val±,∞k (V ). Therefore the representation Val±,∞k (V ) satisfies the

desired properties.

B Some Definitions From Algebraic Geometry

Let G be an algebraic group. Recall the derived series of G is given recursively by

G(0) := G, G(n) := [G(n−1), G(n−1)] for n ≥ 1,

where [G,G] is the commutator. We say G is solvable if its derived series terminates

in the trivial group. A maximal, solvable, connected, algebraic subgroup B of an algebraic

group G is called a Borel subgroup of G.

Now take G to be a connected algebraic reductive group over R. We say a closed algebraic

subgroup H of G is spherical if the action of H on G/B (where B is a Borel subgroup of

G) has finitely many orbits. Equivalently, H is spherical if and only if the action of H on

G/B has an open orbit.

The following lemma is used in an earlier section of this paper, and also serves as a useful

example. While the result is standard, the proof is largely from [12].

Lemma 45. Let G = GLn(C). Then the subset B of upper-triangular matrices in G is a

Borel subgroup.
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Proof. Note G is a Lie group, and B is a connected, algebraic Lie group. Then B is solvable

if its Lie algebra b is solvable, in the sense that the Lie commutator series

b(0) := b, b(n) := [b(n−1), bn−1] for n ≥ 1

eventually vanishes. Note b is the set of all upper-triangular matrices (not necessarily

invertible). If A,B ∈ b, then the k-th diagonal element of AB is akkbkk, and the k-th diagonal

element of BA is the same. Elements below the diagonal of AB and BA are 0. Therefore

[A,B], the general element of b(1), has the form

[A,B] =



0 ∗ ∗ · · · ∗

0 0 ∗ · · · ∗
...

...
...

...
...

0 0 0 · · · ∗

0 0 0 · · · 0


(23)

Proceeding by induction, we see that b(n) = 0, so b and B are solvable. For maximality of

B, suppose P between B and GLn(C) is solvable. We can choose r and ai for i = 1, . . . , r

such P is the collection of all matrices A of the form

A =



A1 ∗ ∗ · · · ∗

0 A2 ∗ · · · ∗

0 0 A3 · · · ∗
...

...
... · · · ...

0 0 0 · · · Ar


,

where the Ai are arbitary elements of GLai(C). Constuct the group homomorphsim
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ϕ : P → GLa1(C)× · · · ×GLar(C)

ϕ(A) := (A1, . . . , Ar).

The kernel ker(ϕ) is normal in GLn(C), and since ϕ is surjective, then moreover

GLn(C)/ ker(ϕ) ∼= GLa1(C)× · · · ×GLar(C).

From general theory, P being solvable implies the quotient GLn(C)/ ker(ϕ) is also solv-

able. So then the product GLa1(C)× · · · ×GLar(C) is solvable, which means we necessarily

have ai = 1 for each i. Therefore P ∼= B, and B is maximal.
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