Main Result

Given a foliated manifold (M, \mathcal{F}) , consider:

- the complex of basic differential forms $\Omega^{\bullet}_{\text{basic}}(M)$, consisting of $\alpha \in \Omega^{\bullet}(M)$ such that $\iota_X \alpha = 0$ and $\mathcal{L}_X \alpha = 0$ for all vector fields X tangent to \mathcal{F}
- the complex of diffeological differential forms $\Omega^{\bullet}(M/\mathcal{F})$, consisting of diffeological differential forms on the leaf space carrying the quotient diffeology.

THEOREM. The pullback by the quotient map $\pi : M \to M/\mathcal{F}$ gives an isomorphism $\Omega^{\bullet}(M/\mathcal{F}) \to \Omega^{\bullet}_{\text{basic}}(M)$.

Diffeology

Definitions

- A **diffeology** on a set X is a set \mathcal{D} of maps from open subsets U of Euclidean spaces to X, with members called *plots*, such that
- -Constant maps are plots.
- $-\operatorname{If} p: U \to X$ is such that about each point in U there is open $V \subseteq U$ such that $p|_V$ is a plot, then p is a plot.
- $-\text{If } p: U \to X \text{ is a plot and } V \text{ is an open subset of Euclidean space,}$ then F^*p is a plot for all smooth $F: V \to U$.

We call (X, \mathcal{D}) a **diffeological space**.

• A diffeological differential k-form α on (X, \mathcal{D}) is an assignment to each plot $p: U \to X$ a k-form $\alpha(p) \in \Omega^k(U)$, such that for every open subset V of Euclidean space and smooth map $F: V \to U$,

$$\alpha(p \circ F) = F^*(\alpha(p)).$$

Diffeological differential forms assemble into a de Rham complex $\Omega^{\bullet}(X)$.

Examples

- Smooth maps $U \to M$ form a diffeology on a manifold M.
- Diffeological forms on M are identified with usual differential forms.
- The quotient space X/\sim for an equivalence relation \sim carries the finest diffeology in which the quotient map $\pi : X \to X/\sim$ is diffeologically smooth (i.e. pullbacks of π by plots of X are plots).

Key Result

Proposition 1. The quotient map $\pi : X \to X/\sim$ induces an injection $\pi^*: \Omega^{\bullet}(X/\sim) \to \Omega^{\bullet}(X)$. Its image consists of forms $\alpha \in \Omega^{\bullet}(X)$ such that for plots $p_1, p_2: U \to X$ with $\pi \circ p_1 = \pi \circ p_2$,

 $p_1^*\alpha = p_2^*\alpha.$

See [1].

david.miyamoto@mail.utoronto.ca

BASIC FORMS ON FOLIATED MANIFOLDS

David Miyamoto

Supervisor: Yael Karshon | University of Toronto

Groupoids

Definitions

- A groupoid G is a small category $G_1 \rightrightarrows G_0$ with invertible morphisms. Denote its source s and target t. It is **Lie** if G_0 and G_1 are manifolds (except G_1 need not be second-countable or Hausdorff) the structure maps are smooth, and s is a submersion.
- $\alpha \in \Omega^{\bullet}(G_0)$ is **G-basic** if $s^*\alpha = t^*\alpha$. These forms assemble into a de Rham complex $\Omega^{\bullet}_{G_1 \rightrightarrows G_0}(G_0)$.
- A functor $f: G \to H$ of Lie groupoids is a **refinement** if -the following is a fibered square

$$\begin{array}{ccc}G_1 \xrightarrow{f_1} & \searrow & \square \\ & \downarrow^{(s,t)} \\ G_0 \times G_0 \xrightarrow{(f_0,f_0)} & H_0\end{array}$$

-the map $s \circ pr_2 : G_0 \xrightarrow{f} \times_t H_1 \to H_0$ is a surjective submersion. • G and H are Morita equivalent if there are refinements from a Lie groupoid K to G and to H

Examples

- A foliated manifold (M, \mathcal{F}) admits the (Lie) **holonomy groupoid** Hol (M, \mathcal{F}) , with objects the points of M, arrows the *holonomy classes* of leaf-paths, and orbits the leaves.
- Given $\varphi: N \to G_0$, we have the pullback Lie groupoid $\varphi^*(G)$ over N when $t \circ \operatorname{pr}_1: G_1 \rtimes \mathfrak{S} \to G_0$ is a submersion.
- -The pullback of $\operatorname{Hol}(M,\mathcal{F})$ by a complete transversal $\iota: S \hookrightarrow M$ to \mathcal{F} , denoted $\operatorname{Hol}_S(M,\mathcal{F})$, is an étale (i.e. dim $G_1 = \dim G_0$) and effective Lie groupoid Morita equivalent to $\operatorname{Hol}(M, \mathcal{F})$.

Key Results

- **Proposition 2.** See [4]. A refinement $f: G \to H$ induces
- An isomorphism $f_0^* : \Omega_{H_1 \rightrightarrows H_0}^{\bullet}(H_0) \to \Omega_{G_1 \rightrightarrows G_0}^{\bullet}(G_0).$
- A diffeological diffeomorphism $[f]: G_0/G_1 \to H_0/H_1$.
- **Proposition 3.** $Hol(M, \mathcal{F})$ -basic forms are exactly \mathcal{F} -basic forms.

Pseudogroups

Definitions

- A **pseudogroup** on M is a set P of diffeomorphisms of open subsets of M such that: $-\mathrm{id} \mid_U \in P$ for every open U.
- -If $f, f' \in P$, then so are $f' \circ f$ and f^{-1} .
- -If $f: U \to U'$ is a diffeomorphism, $\{U_i\}$ covers U, and every $f|_{U_i} \in P$, then $f \in P$.
- For étale $G_1 \rightrightarrows G_0$, the set of *bi-submersions* $\Psi(G)$ is a pseudogroup on G_0 .
- For a pseudogroup P, we get a Lie groupoid $\Gamma(P)$ over M with arrows the germs of elements of P.

Key Results

Proposition 4. The pseudogroup $\Psi(\operatorname{Hol}_S(M, \mathcal{F}))$ is countably generated. See [3]. **Proposition 5.** For étale effective G, basic forms are exactly $\Psi(G)$ -invariant forms.

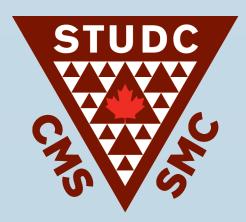
$$\begin{array}{c} H_1 \\ \downarrow^{(s,t)} \\ \times H_0 \end{array}$$

Step 1: Notation and Reformulation Fix the following: • A foliated manifold (M, \mathcal{F}) , with complete transversal $\iota : S \hookrightarrow M$. • $H := \operatorname{Hol}(M, \mathcal{F})$, and $G := \operatorname{Hol}_S(M, \mathcal{F})$. • $P := \Psi(\operatorname{Hol}_S(M, \mathcal{F})).$ By **Proposition 3**, and the fact the orbits of H are the leaves, we may instead prove π^* gives an isomorphism $\Omega^{\bullet}(M/\mathcal{F}) \to \Omega^{\bullet}_{H_1 \rightrightarrows M}(M)$. Step 2: Well-posedness and injectivity \bullet We use the second clause of **Proposition 1** to show that the pullback $\pi^*: \Omega^{\bullet}(M/\mathcal{F}) \to \Omega^{\bullet}(M)$ has image contained in $\Omega^{\bullet}_{H_1 \Longrightarrow M}(M)$. • We use the first clause of **Proposition 1** to see that π^* is an injection. Therefore it only remains to prove π^* surjects onto $\Omega^{\bullet}_{H_1 \rightrightarrows M}(M)$. Step 3: Surjectivity The complete transversal $\iota: S \hookrightarrow M$ induces a refinement $\iota: G \to H$. **Proposition 2** gives a commutative diagram: We prove π_G^* is onto. Take G-basic α on S. By **Proposition 5**, α is P-invariant. By **Proposition 1**, we must show for all smooth plots $p_1, p_2: U \to S$ with $\pi_G \circ p_1 = \pi_G \circ p_2$, we have $p_1^* \alpha = p_2^* \alpha$. Because P is countably generated by **Proposition 4**, we can choose $\{f_I\} \subseteq P$ countable with: (i) $U = \bigcup_I C_I$, where (ii) $p_1 = f_I \circ p_2$ on int The first point (i), together with the fact the C_I are closed in U, implies through the Baire category theorem that $U = \bigcup_I \overline{\operatorname{int} C_I}$. The second point (ii), combined with P-invariance of α , gives that $p_1^* \alpha = p_2^* \alpha$ on int C_I . By continuity, $p_1^* \alpha = p_2^* \alpha$ on the closure int C_I . Hence equality holds on U This completes the proof of surjectivity, hence the theorem. References

Methods Appl. **12**, 19 pp.

[3] I. Moerdijk and J. Mrcun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, vol. 91, Camebridge University Press, Cambridge, 2003.

[4] J. Watts, The orbit space and basic forms of a proper Lie groupoid, 2015. preprint at arXiv:1309.3001v3.



The Proof

$$C_I := \{ u \in U \mid p_1(u) = f_I \circ p_2(u) \}.$$

$$C_I.$$

[1] P. Iglesias-Zemmour, *Diffeology*, Mathematical Surveys and Monographs, vol. 185, American Mathematical Society, Providence,

[2] Y. Karshon and J. Watts, *Basic forms and orbit spaces: a diffeological approach*, SIGMA Symmetry Integrability Geom.