In each exercise, we consider affine lines in \mathbb{R}^{2} in a different way.
Bonus note: Exercise 1 generalizes to describe affine hyperplanes in \mathbb{R}^{n}. Exercise 2 generalizes to describe lines in \mathbb{R}^{n}.

Exercise 1. An affine line in \mathbb{R}^{2} is given by (the solution set of) an equation of the form

$$
\begin{equation*}
a x+b y=c, \quad \text { for some } a, b, c \in \mathbb{R}, \text { with }(a, b) \neq(0,0) . \tag{1}
\end{equation*}
$$

Denote the set of affine lines in \mathbb{R}^{2} by $\mathrm{AGr}_{1}\left(\mathbb{R}^{2}\right)$.
(a) What condition (equation) can we impose on a, b without discarding any lines from consideration? (Hint: $a^{2}+b^{2} \neq 0$).
(b) If

$$
a x+b y=c \text { and } a^{\prime} x+b^{\prime} y=c^{\prime}
$$

describe the same line, where a, b and a^{\prime}, b^{\prime} satisfy your condition in (a), can you relate (a, b) to $\left(a^{\prime}, b^{\prime}\right)$, and c to c^{\prime} ?
(c) Describe a function $f: S^{1} \times \mathbb{R} \rightarrow \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$. Is f surjective? For a line $\ell \in \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$, how large is $f^{-1}(\ell)$?

Exercise 2. An affine line in \mathbb{R}^{2} is given by choosing a line L through the origin, choosing a point $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$, and translating L to go through $\left(x_{0}, y_{0}\right)$.
(a) If L and $\left(x_{0}, y_{0}\right)$ and L^{\prime} and $\left(x_{0}^{\prime}, y_{0}^{\prime}\right)$ describe the same line, can you relate L and L^{\prime}, and $\left(x_{0}, y_{0}\right)$ and $\left(x_{0}^{\prime}, y_{0}^{\prime}\right) ?$
(b) The set of lines through the origin is $\mathbb{R} P^{1}$. Describe a function $g: \mathbb{R} P^{1} \times \mathbb{R}^{2} \rightarrow \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$. For a line $\ell \in \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$, describe $g^{-1}(\ell)$.

Exercise 3. A non-horizontal line in \mathbb{R}^{2} is given by (the solution set of) an equation of the form (1), except also $a \neq 0$.
(a) Exercise 1 (a), except only impose a condition on a (Hint: $a \neq 0$).
(b) Exercise 1 (b).
(c) Describe a function $h: \mathbb{R} \times \mathbb{R} \rightarrow \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$. Is h surjective? For a line $\ell \in \operatorname{AGr}_{1}\left(\mathbb{R}^{2}\right)$, how large is $h^{-1}(\ell)$?
(d) Could h be a coordinate chart for $\mathrm{AGr}_{1}\left(\mathbb{R}^{2}\right)$?

Exercise 4. Let M be an n-manifold, with maximal atlas $\mathcal{A}=\{(U, \varphi)\}$, and let X be a set. Suppose $f: M \rightarrow X$ is a bijection. Consider the collection given by

$$
\mathcal{B}:=\left\{\left(f(U), \varphi \circ f^{-1}\right)\right\},
$$

where the f^{-1} above is understood to be the restriction $f^{-1}: f(U) \rightarrow U$.
(a) Prove the elements of \mathcal{B} are charts of X.
(b) Prove that X, equipped with the maximal atlas generated by \mathcal{B}, is a manifold. (Hint: the countability and Hausdorff conditions are easier).
(c) Let $M=\mathbb{R}$, with the standard maximal atlas, and $X=\mathbb{R}$. Can you give an example of a bijection $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\mathcal{B} \neq \mathcal{A}$? (Hint: f cannot be a diffeomorphism $(\mathbb{R}, \mathcal{A}) \rightarrow$ $(\mathbb{R}, \mathcal{A})$).
(d) Bonus: does \mathbb{R}^{2} have the structure of a 1-dimensional manifold?

Exercise 5. Let X, Y, and Z be sets, and $f: X \rightarrow Y$ be a function. We denote by $\operatorname{Fun}(Z, X)$ the set of functions from Z to X. Consider the function (the pushforward by f) defined by

$$
f_{*}: \operatorname{Fun}(Z, X) \rightarrow \operatorname{Fun}(Z, Y), \quad f_{*}(g):=f \circ g
$$

(a) Does it make sense to ask if, for all $\lambda \in \mathbb{R}$,

$$
f_{*}\left(\lambda g_{1}+g_{2}\right)=\lambda f_{*}\left(g_{1}\right)+f_{*}\left(g_{2}\right) ?
$$

If so, prove it is true, or give a counter-example. If not, how could we re-write the set-up for the statement to make sense, and for it to be true?
(b) Same question as (a), except for the statement

$$
\left(\lambda f_{1}+f_{2}\right)_{*}=\lambda\left(f_{1}\right)_{*}+\left(f_{2}\right)_{*}
$$

Exercise 6. For this exercise, we assume some familiarity with complex numbers. The unit sphere in \mathbb{C}^{2} is $S^{3}:=\left\{\left.(z, w)| | z\right|^{2}+|w|^{2}=1\right\}$. This is a submanifold. We are going to decompose it into a union of circles.
(a) Recall that complex projective space, $\mathbb{C} P^{1}$, is the quotient of $\mathbb{C}^{2} \backslash\{\mathbf{0}\}$ by the relation: $\left(z_{1}, w_{1}\right) \sim\left(z_{2}, w_{2}\right)$ if and only if $\left(z_{1}, w_{1}\right)=\lambda\left(z_{2}, w_{2}\right)$ for some $\lambda \in \mathbb{C}$. The equivalence class of (z, w) is denoted $[z: w]$. Just like $\mathbb{R} P^{n}, \mathbb{C} P^{1}$ is a manifold. Consider the map

$$
\pi: S^{3} \rightarrow \mathbb{C} P^{1}, \quad \pi(z, w):=[z: w]
$$

In one sentence, why is this a smooth map? Is it surjective?
(b) For $\ell \in \mathbb{C} P^{1}$, describe $\pi^{-1}(\ell)$. (Hint: start by fixing $\left(z_{0}, w_{0}\right)$ with $\pi\left(z_{0}, w_{0}\right)=\ell$).
(c) Describe a map $S^{1} \rightarrow \pi^{-1}(\ell)$. Is your map invertible? (Hint: $S^{1} \subseteq \mathbb{C}$).

The decomposition $S^{3}=\bigsqcup_{\ell \in \mathbb{C} P^{1}} \pi^{-1}(\ell)$ is called the Hopf fibration. There is more information in the textbook.

Exercise 7. In this exercise, we look at smooth maps into submanifolds.
(a) Let $\varphi=\left(\varphi^{1}, \ldots, \varphi^{m}\right): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a diffeomorphism. Set $S:=\left\{\varphi^{k+1}=\cdots=\varphi^{m}=0\right\}$. Is this a submanifold of \mathbb{R}^{m} ? If so, what are some charts?
(b) Suppose $f: N \rightarrow \mathbb{R}^{m}$ is a smooth map from an n-manifold N, and $f(N) \subseteq S$. Prove the map

$$
\left.f\right|^{S}: N \rightarrow S,\left.\quad f\right|^{S}(q)=f(q)
$$

is smooth. (Bonus: do the same thing, except now assume that S is an arbitrary submanifold of a manifold M.)
(c) (Bonus) The sets $X_{-}:=\{(x, 0) \mid x<0\}, X_{+}:=\{(x, 0) \mid x>0\}$, and $Y:=\{(0, y)\}$ are all manifolds. Therefore their disjoint union $Q:=X_{-} \sqcup X_{+} \sqcup Y$ has a manifold structure. Prove, however, that this manifold structure cannot be a submanifold structure induced from \mathbb{R}^{2}. (Hint: you should use (b)).

We are going to practice finding the rank of a smooth map through investigating some properties of an interesting immersion, called the irrational winding of the torus. Before we begin, you might find the following fact useful: if A and B are linear maps (that can be composed), then

$$
\operatorname{rank} A B \leq \operatorname{rank} B \quad \text { and also } \quad \operatorname{rank} A B \leq \operatorname{rank} A
$$

Now fix an irrational number α, and let

$$
f: \mathbb{R} \rightarrow S^{1} \times S^{1}, \quad f(t):=(\cos (t), \sin (t), \cos (\alpha t), \sin (\alpha t))
$$

Exercise 8.

(a) Show that f has maximal rank at $t=0$, either by viewing f as a map into \mathbb{R}^{4}, or by recalling that $(x, y) \mapsto \frac{x}{1-y}$ is a chart of S^{1}. In fact, f is an immersion.
(b) Prove that f is injective (Hint: the first two coordinates of $f(t)$ are the point on the circle with angle t radians to the x-axis).
(c) Did we prove a theorem that says that $f(\mathbb{R})$ is a submanifold of $S^{1} \times S^{1}$?

Let $\Lambda=f(\mathbb{R})$. Because f is injective, we can give Λ the atlas generated by the chart

$$
\left(\left.f\right|^{\Lambda}\right)^{-1}: \Lambda \rightarrow \mathbb{R}
$$

Let Λ_{f} denote this manifold.

Exercise 9.

(a) Is the inclusion $\iota_{f}: \Lambda_{f} \rightarrow S^{1} \times S^{1}$ an immersion?
(b) The following property holds:
if $g: N \rightarrow S^{1} \times S^{1}$ is a smooth map, and $g(N) \subseteq \Lambda$, then $\left.g\right|^{\Lambda_{f}}: N \rightarrow \Lambda_{f}$ is smooth.
Using this property, prove that: if $\Lambda_{\text {? }}$ is some manifold whose underlying set is Λ, and also the inclusion $\iota_{?}: \Lambda_{?} \rightarrow S^{1} \times S^{1}$ is an immersion, then the identity map id : $\Lambda_{?} \rightarrow \Lambda_{f}$ is a diffeomorphism.

Bonus information: the image Λ is a dense subset of $S^{1} \times S^{1}$; it is not a submanifold. Nevertheless, we saw in Tutorial 3 that property $\left(^{*}\right)$ for Λ_{f} is exactly the same property that all submanifolds have. This suggests that it still makes sense to think of Λ_{f} as "submanifold-like." Indeed, we call subsets like Λ weakly-embedded submanifolds.

Every tangent vector $v \in T_{x} M$ is a linear function $C^{\infty}(M) \rightarrow \mathbb{R}$ that is, by definition, represented by a curve $\gamma: \mathbb{R} \rightarrow M$, with $\gamma(0)=x$, such that

$$
v(f)=\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))
$$

Let's write $v=[\gamma]$ for " v is represented by γ." If $F: M \rightarrow N$ is a smooth function, then its tangent map is the linear map $T_{x} F: T_{x} M \rightarrow T_{F(x)} N$, which is the linear function $C^{\infty}(N) \rightarrow \mathbb{R}$ given by

$$
\left(T_{x} F(v)\right)(g)=v(g \circ F)
$$

If $v=[\gamma]$, then $\left(T_{x} F(v)\right)(g)=\left.\frac{d}{d t}\right|_{t=0} g(F(\gamma(t)))$. So then $T_{x} F(v)=[F \circ \gamma]$.
Exercise 10. Let $F: \operatorname{Mat}(2 ; \mathbb{R}) \rightarrow \operatorname{Mat}(2 ; \mathbb{R})$ be defined by

$$
F(A):=A \Phi A^{\top},
$$

where $\Phi=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
(a) If V is a vector space, and $x \in V$, how can you associate to $v \in V$ a vector in $T_{x} V$? Is this assignment an isomorphism?
(b) Using (a), find $D_{A} F(X)$, for $X \in T_{A} \operatorname{Mat}(2 ; \mathbb{R})$.
(c) Now assume $F(A)=\Phi$. Why is $D_{A} F$ not surjective? (Hint: what is $D_{A} F(X)^{\top}$?). Can you modify F so that $D_{A} F$ becomes surjective?
(d) Again assuming $F(A)=\Phi$, what is ker $D_{I} F$, and what is its dimension?

We call $F^{-1}(\Phi)$ the split-orthogonal group $O(1,1)$. It consists of transformations that preserve the quadratic form $x^{2}-y^{2}$. In this exercise, we showed that $O(1,1)$ is a manifold, because it is the pre-image of a regular value (namely Φ) of $F: \operatorname{Mat}(2 ; \mathbb{R}) \rightarrow \operatorname{Sym}(2 ; \mathbb{R})$, and we showed $T_{I} O(1,1)$ is a one-dimensional subspace of $\operatorname{Mat}(2 ; \mathbb{R})$.

Exercise 11. View S^{1} as the circle $x^{2}+y^{2}=1$, inside \mathbb{R}^{2}. Define

$$
\pi: \mathbb{R} \rightarrow S^{1}, \quad \pi(t)=(\cos (t), \sin (t))
$$

Let $X=f(t) \frac{\partial}{\partial t}$ be a vector field on \mathbb{R}.
(a) Express $T_{t_{0}} \pi\left(X_{t_{0}}\right)$ in terms of $\left.\frac{\partial}{\partial x}\right|_{\pi\left(t_{0}\right)}$ and $\left.\frac{\partial}{\partial y}\right|_{\pi\left(t_{0}\right)}$.
(b) Express $T_{t_{0}} \pi\left(X_{t_{0}}\right)$ as a linear map $C^{\infty}\left(S^{1}\right) \rightarrow \mathbb{R}$.
(c) Is there a vector field Y on S^{1} that is π-related to:
(i) $\frac{\partial}{\partial t}$?
(ii) $e^{t} \frac{\partial}{\partial t}$?
(iii) $g(\pi(t)) \frac{\partial}{\partial t}$, where $g: S^{1} \rightarrow \mathbb{R}$?

Exercise 12. Suppose $F: M \rightarrow N$ is a diffeomorphism.
(a) Given a vector field X on M, what is the unique vector field Y on N that is F-related to X ? Denote this vector field $F_{*} X$.
(b) Prove that

$$
\left[F_{*} X_{1}, F_{*} X_{2}\right]=F_{*}\left[X_{1}, X_{2}\right]
$$

where X_{i} are vector fields on M. Hint: the following commutes:

View S^{2} as the unit sphere inside \mathbb{R}^{3}. We will construct a diffeomorphism of S^{2} that fixes exactly one point.

Exercise 13. Let $N=(0,0,1)$ be the north pole. Recall that stereographic projection is a diffeomorphism $\varphi: S^{2} \backslash\{N\} \rightarrow \mathbb{R}^{2}$ defined by

$$
\begin{aligned}
\varphi(x, y, z) & :=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)=(u, v) \\
\varphi^{-1}(u, v) & =\left(\frac{2 u}{u^{2}+v^{2}+1}, \frac{2 v}{u^{2}+v^{2}+1}, 1-\frac{2}{u^{2}+v^{2}+1}\right)=(x, y, z)
\end{aligned}
$$

(a) Let $\Phi: \mathbb{R} \times \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map $\Phi(t,(u, v)):=(u+t, v)$. This is a flow of a vector field U on \mathbb{R}^{2}. Find U.
(b) View φ^{-1} as a map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. It turns out there is a vector field X on \mathbb{R}^{3} such that $U \sim_{\varphi^{-1}} X$. Find X.
(c) Prove that X is tangent to S^{2}. (Hint: $X_{(x, y, z)}$ should be perpendicular to what vector?)
(d) What are the integral curves of $\left.X\right|_{S^{2}}$ in terms of Φ and φ^{-1} ? Draw some integral curves. Is $\left.X\right|_{S^{2}}$ complete?
(e) Where does $\left.X\right|_{S^{2}}$ vanish? How can we use $\left.X\right|_{S^{2}}$ to create a diffeomorphism of S^{2} that only fixes one point?

We will discuss some aspects of problem 5 from Homework 4 in some more detail. Let

$$
E=\sum_{i=1}^{m} x^{i} \frac{\partial}{\partial x^{i}}
$$

be the Euler vector field on \mathbb{R}^{m}. It is complete, with flow $\Phi_{t}(x)=e^{t} x$.
Exercise 14. First, we take $m=1$.
(a) For $f \in C^{\infty}((0, \infty))$, write the equation $L_{E} f(x)=k f(x)$ in terms of f and f^{\prime}.
(b) You should have an ODE. Solve it (Hint: the solution will depend on $f(1)$). Is f necessarily a polynomial on $(0, \infty)$?
(c) What if $f \in C^{\infty}(\mathbb{R} \backslash\{0\})$? Or if $f \in C^{\infty}(\mathbb{R})$?

Exercise 15. Now we deal with general m.
(a) For $f \in C^{\infty}\left(\mathbb{R}^{m} \backslash\{0\}\right)$, write the equation $L_{E} f(x)=k f(x)$ in terms of f and ∇f.
(b) You should have a PDE, which is harder to solve. Lets try to uncover an ODE similar to Exercise 1 instead.
If we replace x with $t x_{0}$ in the PDE in (a), can you write the resulting equation as an ODE in t ? What is its solution? What does this say about f ?
(c) Now assume $f \in C^{\infty}\left(\mathbb{R}^{m}\right)$. Why is k a non-negative integer?
(d) Prove that $\frac{\partial f}{\partial x_{i}}$ satisfies $L_{E} \frac{\partial f}{\partial x_{i}}=(k-1) \frac{\partial f}{\partial x_{i}}$. Why may we conclude f is a polynomial?

Fix a manifold M of dimension m. Given a 1-form $\alpha \in \Omega^{1}(M)$, we can pull it back by any function $F: \mathcal{U} \rightarrow M$ (here \mathcal{U} and \mathcal{V} always denote a subset of \mathbb{R}^{m}) to get a 1-form $F^{*} \alpha \in \Omega^{1}(\mathcal{U})$. Think of this as an assignment:

To each smooth function $F: \mathcal{U} \rightarrow M$, assign the 1-form $F^{*} \alpha \in \Omega^{1}(\mathcal{U})$.
In this tutorial, we investigate going the other way. Let a be an assignment as follows:
To each smooth function $F: \mathcal{U} \rightarrow M$, assign a 1-form $a(F) \in \Omega^{1}(\mathcal{U})$.
We will say that a is induced by α if $a(F)=F^{*} \alpha$ for all $F: \mathcal{U} \rightarrow M$.

Exercise 16.

(a) Not every assignment a is induced by some 1 -form α. Give an example.
(b) If we try to find some α that induces a, we might try to define α in each coordinate chart. For $\varphi: U \rightarrow \varphi(U)$, how should we try to define $\left.\alpha\right|_{U}$? How would we define α_{p} ?
(c) In order for α to be well-defined, it should not depend on the choice of coordinate charts. What condition on a would make this so?
(d) Given a satisfying the condition in (c), prove that α constructed in (b) is a 1-form that induces a (you may assume, and will need, Lemma 7.11). Propose an alternate definition of a 1 -form.

In this tutorial, we will warm up with a proof of the Poincaré lemma in a special case. Then we will prove the Poincaré lemma in generality. First, the lemma states:

Lemma (Poincaré). For all $n \geq 0$, and $k \geq 1$,

$$
H^{k}\left(\mathbb{R}^{n}\right)=0
$$

In other words, every k-form is exact (i.e. for every $\alpha \in \Omega^{k}\left(\mathbb{R}^{n}\right)$, there exists $\beta \in \Omega^{k-1}\left(\mathbb{R}^{n}\right)$ such that $d \beta=\alpha$).

Exercise 17. We first prove this lemma for $n=2$ and $k=1$. Let $\alpha=P d x+Q d y$ be a closed 1 -form on \mathbb{R}^{2}. We seek a function β so that $d \beta=\alpha$.
(a) Write the equations $d \beta=\alpha$ and $d \alpha=0$ in terms of their component functions.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function, an anti-derivative is $F(t):=\int_{0}^{t} f(s) d s$. What is a function $\mathbb{R}^{2} \rightarrow \mathbb{R}$ whose x-partial equals $P(x, y)$?
(c) The y-partial of your answer to (b) is probably not $Q(x, y)$, but is close. Modify the function in (b) to get a primitive for α (Hint: you do not want to change the x-partial).

In this tutorial, we will use Stokes' theorem to find a volume (area) form on the sphere. View the unit sphere S^{2} as inside \mathbb{R}^{3}.

Exercise 18.

(a) The differential form $d x \wedge d y \wedge d z \in \Omega^{3}\left(\mathbb{R}^{3}\right)$ is closed. In fact, it is exact (why?). Find some primitives ω.
(b) Find a primitive ω which never vanishes on S^{2}. We call a top degree differential form that never vanishes a volume form.
(c) Evaluate $\int_{S^{2}} \omega$ (where S^{2} is oriented with outward-pointing normals). Is this the surface area of the sphere? What if S^{2} has radius $r \neq 1$?
(d) Prove Archimedes' theorem: if D is the region of the sphere between the hyperplanes $z=a$ and $z=b$, for $-1<a<b<1$ then the surface area of D depends only on $b-a$ (Hint: cylindrical coordinates).

