In each exercise, we consider affine lines in \mathbb{R}^2 in a different way.

Bonus note: Exercise 1 generalizes to describe affine hyperplanes in \mathbb{R}^n . Exercise 2 generalizes to describe lines in \mathbb{R}^n .

Exercise 1. An affine line in \mathbb{R}^2 is given by (the solution set of) an equation of the form

$$ax + by = c$$
, for some $a, b, c \in \mathbb{R}$, with $(a, b) \neq (0, 0)$. (1)

Denote the set of affine lines in \mathbb{R}^2 by $AGr_1(\mathbb{R}^2)$.

- (a) What condition (equation) can we impose on a, b without discarding any lines from consideration? (Hint: $a^2 + b^2 \neq 0$).
- (b) If

$$ax + by = c$$
 and $a'x + b'y = c'$

describe the same line, where a, b and a', b' satisfy your condition in (a), can you relate (a, b) to (a', b'), and c to c'?

(c) Describe a function $f: S^1 \times \mathbb{R} \to \mathrm{AGr}_1(\mathbb{R}^2)$. Is f surjective? For a line $\ell \in \mathrm{AGr}_1(\mathbb{R}^2)$, how large is $f^{-1}(\ell)$?

Exercise 2. An affine line in \mathbb{R}^2 is given by choosing a line L through the origin, choosing a point $(x_0, y_0) \in \mathbb{R}^2$, and translating L to go through (x_0, y_0) .

- (a) If L and (x_0, y_0) and L' and (x'_0, y'_0) describe the same line, can you relate L and L', and (x_0, y_0) and (x'_0, y'_0) ?
- (b) The set of lines through the origin is $\mathbb{R}P^1$. Describe a function $g : \mathbb{R}P^1 \times \mathbb{R}^2 \to \mathrm{AGr}_1(\mathbb{R}^2)$. For a line $\ell \in \mathrm{AGr}_1(\mathbb{R}^2)$, describe $g^{-1}(\ell)$.

Exercise 3. A non-horizontal line in \mathbb{R}^2 is given by (the solution set of) an equation of the form (1), except also $a \neq 0$.

- (a) Exercise 1 (a), except only impose a condition on a (Hint: $a \neq 0$).
- (b) Exercise 1 (b).
- (c) Describe a function $h : \mathbb{R} \times \mathbb{R} \to \mathrm{AGr}_1(\mathbb{R}^2)$. Is h surjective? For a line $\ell \in \mathrm{AGr}_1(\mathbb{R}^2)$, how large is $h^{-1}(\ell)$?
- (d) Could h be a coordinate chart for $AGr_1(\mathbb{R}^2)$?

Exercise 4. Let M be an n-manifold, with maximal atlas $\mathcal{A} = \{(U, \varphi)\}$, and let X be a set. Suppose $f: M \to X$ is a bijection. Consider the collection given by

$$\mathcal{B} := \{ (f(U), \varphi \circ f^{-1}) \},\$$

where the f^{-1} above is understood to be the restriction $f^{-1}: f(U) \to U$.

- (a) Prove the elements of \mathcal{B} are charts of X.
- (b) Prove that X, equipped with the maximal atlas generated by \mathcal{B} , is a manifold. (Hint: the countability and Hausdorff conditions are easier).
- (c) Let $M = \mathbb{R}$, with the standard maximal atlas, and $X = \mathbb{R}$. Can you give an example of a bijection $f : \mathbb{R} \to \mathbb{R}$ such that $\mathcal{B} \neq \mathcal{A}$? (Hint: f cannot be a diffeomorphism $(\mathbb{R}, \mathcal{A}) \to (\mathbb{R}, \mathcal{A})$).
- (d) Bonus: does \mathbb{R}^2 have the structure of a 1-dimensional manifold?

Exercise 5. Let X, Y, and Z be sets, and $f : X \to Y$ be a function. We denote by Fun(Z, X) the set of functions from Z to X. Consider the function (the *pushforward* by f) defined by

$$f_*: \operatorname{Fun}(Z, X) \to \operatorname{Fun}(Z, Y), \quad f_*(g) := f \circ g.$$

(a) Does it make sense to ask if, for all $\lambda \in \mathbb{R}$,

$$f_*(\lambda g_1 + g_2) = \lambda f_*(g_1) + f_*(g_2)?$$

If so, prove it is true, or give a counter-example. If not, how could we re-write the set-up for the statement to make sense, and for it to be true?

(b) Same question as (a), except for the statement

$$(\lambda f_1 + f_2)_* = \lambda (f_1)_* + (f_2)_*.$$

Exercise 6. For this exercise, we assume some familiarity with complex numbers. The unit sphere in \mathbb{C}^2 is $S^3 := \{(z, w) \mid |z|^2 + |w|^2 = 1\}$. This is a submanifold. We are going to decompose it into a union of circles.

(a) Recall that complex projective space, $\mathbb{C}P^1$, is the quotient of $\mathbb{C}^2 \setminus \{\mathbf{0}\}$ by the relation: $(z_1, w_1) \sim (z_2, w_2)$ if and only if $(z_1, w_1) = \lambda(z_2, w_2)$ for some $\lambda \in \mathbb{C}$. The equivalence class of (z, w) is denoted [z : w]. Just like $\mathbb{R}P^n$, $\mathbb{C}P^1$ is a manifold. Consider the map

$$\pi: S^3 \to \mathbb{C}P^1, \quad \pi(z, w) := [z:w].$$

In one sentence, why is this a smooth map? Is it surjective?

- (b) For $\ell \in \mathbb{C}P^1$, describe $\pi^{-1}(\ell)$. (Hint: start by fixing (z_0, w_0) with $\pi(z_0, w_0) = \ell$).
- (c) Describe a map $S^1 \to \pi^{-1}(\ell)$. Is your map invertible? (Hint: $S^1 \subseteq \mathbb{C}$).

The decomposition $S^3 = \bigsqcup_{\ell \in \mathbb{C}P^1} \pi^{-1}(\ell)$ is called the *Hopf fibration*. There is more information in the textbook.

Exercise 7. In this exercise, we look at smooth maps into submanifolds.

- (a) Let $\varphi = (\varphi^1, \dots, \varphi^m) : \mathbb{R}^m \to \mathbb{R}^m$ be a diffeomorphism. Set $S := \{\varphi^{k+1} = \dots = \varphi^m = 0\}$. Is this a submanifold of \mathbb{R}^m ? If so, what are some charts?
- (b) Suppose $f: N \to \mathbb{R}^m$ is a smooth map from an *n*-manifold N, and $f(N) \subseteq S$. Prove the map

$$f|^S: N \to S, \quad f|^S(q) = f(q)$$

is smooth. (Bonus: do the same thing, except now assume that S is an arbitrary submanifold of a manifold M.)

(c) (Bonus) The sets $X_{-} := \{(x, 0) \mid x < 0\}, X_{+} := \{(x, 0) \mid x > 0\}$, and $Y := \{(0, y)\}$ are all manifolds. Therefore their disjoint union $Q := X_{-} \sqcup X_{+} \sqcup Y$ has a manifold structure. Prove, however, that this manifold structure cannot be a submanifold structure induced from \mathbb{R}^{2} . (Hint: you should use (b)).

We are going to practice finding the rank of a smooth map through investigating some properties of an interesting immersion, called the *irrational winding of the torus*. Before we begin, you might find the following fact useful: if A and B are linear maps (that can be composed), then

 $\operatorname{rank} AB \leq \operatorname{rank} B$ and also $\operatorname{rank} AB \leq \operatorname{rank} A$.

Now fix an irrational number α , and let

$$f : \mathbb{R} \to S^1 \times S^1, \quad f(t) := (\cos(t), \sin(t), \cos(\alpha t), \sin(\alpha t)).$$

Exercise 8.

- (a) Show that f has maximal rank at t = 0, either by viewing f as a map into \mathbb{R}^4 , or by recalling that $(x, y) \mapsto \frac{x}{1-y}$ is a chart of S^1 . In fact, f is an immersion.
- (b) Prove that f is injective (Hint: the first two coordinates of f(t) are the point on the circle with angle t radians to the x-axis).
- (c) Did we prove a theorem that says that $f(\mathbb{R})$ is a submanifold of $S^1 \times S^1$?

Let $\Lambda = f(\mathbb{R})$. Because f is injective, we can give Λ the atlas generated by the chart

$$(f|^{\Lambda})^{-1} : \Lambda \to \mathbb{R}.$$

Let Λ_f denote this manifold.

Exercise 9.

- (a) Is the inclusion $\iota_f : \Lambda_f \to S^1 \times S^1$ an immersion?
- (b) The following property holds:

if $g: N \to S^1 \times S^1$ is a smooth map, and $g(N) \subseteq \Lambda$, then $g|^{\Lambda_f}: N \to \Lambda_f$ is smooth. (*)

Using this property, prove that: if $\Lambda_{?}$ is some manifold whose underlying set is Λ , and also the inclusion $\iota_{?} : \Lambda_{?} \to S^{1} \times S^{1}$ is an immersion, then the identity map id $: \Lambda_{?} \to \Lambda_{f}$ is a diffeomorphism.

Bonus information: the image Λ is a dense subset of $S^1 \times S^1$; it is not a submanifold. Nevertheless, we saw in Tutorial 3 that property (*) for Λ_f is exactly the same property that all submanifolds have. This suggests that it still makes sense to think of Λ_f as "submanifold-like." Indeed, we call subsets like Λ weakly-embedded submanifolds.

$$v(f) = \frac{d}{dt}\Big|_{t=0} f(\gamma(t)).$$

Let's write $v = [\gamma]$ for "v is represented by γ ." If $F : M \to N$ is a smooth function, then its tangent map is the linear map $T_xF : T_xM \to T_{F(x)}N$, which is the linear function $C^{\infty}(N) \to \mathbb{R}$ given by

$$(T_xF(v))(g) = v(g \circ F).$$

If $v = [\gamma]$, then $(T_x F(v))(g) = \frac{d}{dt}\Big|_{t=0} g(F(\gamma(t)))$. So then $T_x F(v) = [F \circ \gamma]$.

Exercise 10. Let $F : Mat(2; \mathbb{R}) \to Mat(2; \mathbb{R})$ be defined by

$$F(A) := A\Phi A^{\top}$$

where $\Phi = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

- (a) If V is a vector space, and $x \in V$, how can you associate to $v \in V$ a vector in $T_x V$? Is this assignment an isomorphism?
- (b) Using (a), find $D_A F(X)$, for $X \in T_A \operatorname{Mat}(2; \mathbb{R})$.
- (c) Now assume $F(A) = \Phi$. Why is $D_A F$ not surjective? (Hint: what is $D_A F(X)^{\top}$?). Can you modify F so that $D_A F$ becomes surjective?
- (d) Again assuming $F(A) = \Phi$, what is ker $D_I F$, and what is its dimension?

We call $F^{-1}(\Phi)$ the *split-orthogonal* group O(1, 1). It consists of transformations that preserve the quadratic form $x^2 - y^2$. In this exercise, we showed that O(1, 1) is a manifold, because it is the pre-image of a regular value (namely Φ) of $F : Mat(2; \mathbb{R}) \to Sym(2; \mathbb{R})$, and we showed $T_IO(1, 1)$ is a one-dimensional subspace of $Mat(2; \mathbb{R})$. **Exercise 11.** View S^1 as the circle $x^2 + y^2 = 1$, inside \mathbb{R}^2 . Define

$$\pi : \mathbb{R} \to S^1, \quad \pi(t) = (\cos(t), \sin(t)).$$

Let $X = f(t)\frac{\partial}{\partial t}$ be a vector field on \mathbb{R} .

- (a) Express $T_{t_0}\pi(X_{t_0})$ in terms of $\frac{\partial}{\partial x}\Big|_{\pi(t_0)}$ and $\frac{\partial}{\partial y}\Big|_{\pi(t_0)}$.
- (b) Express $T_{t_0}\pi(X_{t_0})$ as a linear map $C^{\infty}(S^1) \to \mathbb{R}$.
- (c) Is there a vector field Y on S^1 that is π -related to:
 - (i) $\frac{\partial}{\partial t}$? (ii) $e^t \frac{\partial}{\partial t}$? (iii) $g(\pi(t)) \frac{\partial}{\partial t}$, where $g: S^1 \to \mathbb{R}$?

Exercise 12. Suppose $F: M \to N$ is a diffeomorphism.

- (a) Given a vector field X on M, what is the unique vector field Y on N that is F-related to X? Denote this vector field F_*X .
- (b) Prove that

$$[F_*X_1, F_*X_2] = F_*[X_1, X_2]$$

where X_i are vector fields on M. Hint: the following commutes:

$$C^{\infty}(M) \xrightarrow{X_i} C^{\infty}(M)$$

$$F^* \uparrow \qquad F^* \uparrow$$

$$C^{\infty}(N) \xrightarrow{F_*X_i} C^{\infty}(N).$$

6

View S^2 as the unit sphere inside \mathbb{R}^3 . We will construct a diffeomorphism of S^2 that fixes exactly one point.

Exercise 13. Let N = (0, 0, 1) be the north pole. Recall that stereographic projection is a diffeomorphism $\varphi: S^2 \setminus \{N\} \to \mathbb{R}^2$ defined by

$$\varphi(x, y, z) := \left(\frac{x}{1-z}, \frac{y}{1-z}\right) = (u, v)$$
$$\varphi^{-1}(u, v) = \left(\frac{2u}{u^2 + v^2 + 1}, \frac{2v}{u^2 + v^2 + 1}, 1 - \frac{2}{u^2 + v^2 + 1}\right) = (x, y, z).$$

- (a) Let $\Phi : \mathbb{R} \times \mathbb{R}^2 \to \mathbb{R}^2$ be the map $\Phi(t, (u, v)) := (u + t, v)$. This is a flow of a vector field U on \mathbb{R}^2 . Find U.
- (b) View φ^{-1} as a map $\mathbb{R}^2 \to \mathbb{R}^3$. It turns out there is a vector field X on \mathbb{R}^3 such that $U \sim_{\varphi^{-1}} X$. Find X.
- (c) Prove that X is tangent to S^2 . (Hint: $X_{(x,y,z)}$ should be perpendicular to what vector?)
- (d) What are the integral curves of $X|_{S^2}$ in terms of Φ and φ^{-1} ? Draw some integral curves. Is $X|_{S^2}$ complete?
- (e) Where does $X|_{S^2}$ vanish? How can we use $X|_{S^2}$ to create a diffeomorphism of S^2 that only fixes one point?

We will discuss some aspects of problem 5 from Homework 4 in some more detail. Let

$$E = \sum_{i=1}^{m} x^{i} \frac{\partial}{\partial x^{i}}$$

be the Euler vector field on \mathbb{R}^m . It is complete, with flow $\Phi_t(x) = e^t x$.

Exercise 14. First, we take m = 1.

- (a) For $f \in C^{\infty}((0,\infty))$, write the equation $L_E f(x) = k f(x)$ in terms of f and f'.
- (b) You should have an ODE. Solve it (Hint: the solution will depend on f(1)). Is f necessarily a polynomial on $(0, \infty)$?
- (c) What if $f \in C^{\infty}(\mathbb{R} \setminus \{0\})$? Or if $f \in C^{\infty}(\mathbb{R})$?

Exercise 15. Now we deal with general m.

- (a) For $f \in C^{\infty}(\mathbb{R}^m \setminus \{0\})$, write the equation $L_E f(x) = kf(x)$ in terms of f and ∇f .
- (b) You should have a PDE, which is harder to solve. Lets try to uncover an ODE similar to Exercise 1 instead.

If we replace x with tx_0 in the PDE in (a), can you write the resulting equation as an ODE in t? What is its solution? What does this say about f?

- (c) Now assume $f \in C^{\infty}(\mathbb{R}^m)$. Why is k a non-negative integer?
- (d) Prove that $\frac{\partial f}{\partial x_i}$ satisfies $L_E \frac{\partial f}{\partial x_i} = (k-1) \frac{\partial f}{\partial x_i}$. Why may we conclude f is a polynomial?

Fix a manifold M of dimension m. Given a 1-form $\alpha \in \Omega^1(M)$, we can pull it back by any function $F: \mathcal{U} \to M$ (here \mathcal{U} and \mathcal{V} always denote a subset of \mathbb{R}^m) to get a 1-form $F^*\alpha \in \Omega^1(\mathcal{U})$. Think of this as an assignment:

To each smooth function $F: \mathcal{U} \to M$, assign the 1-form $F^* \alpha \in \Omega^1(\mathcal{U})$.

In this tutorial, we investigate going the other way. Let a be an assignment as follows:

To each smooth function $F: \mathcal{U} \to M$, assign a 1-form $a(F) \in \Omega^1(\mathcal{U})$.

We will say that a is *induced* by α if $a(F) = F^* \alpha$ for all $F : \mathcal{U} \to M$.

Exercise 16.

- (a) Not every assignment a is induced by some 1-form α . Give an example.
- (b) If we try to find some α that induces a, we might try to define α in each coordinate chart. For $\varphi: U \to \varphi(U)$, how should we try to define $\alpha|_U$? How would we define α_p ?
- (c) In order for α to be well-defined, it should not depend on the choice of coordinate charts. What condition on *a* would make this so?
- (d) Given a satisfying the condition in (c), prove that α constructed in (b) is a 1-form that induces a (you may assume, and will need, Lemma 7.11). Propose an alternate definition of a 1-form.

In this tutorial, we will warm up with a proof of the Poincaré lemma in a special case. Then we will prove the Poincaré lemma in generality. First, the lemma states:

Lemma (Poincaré). For all $n \ge 0$, and $k \ge 1$,

 $H^k(\mathbb{R}^n) = 0.$

In other words, every k-form is exact (i.e. for every $\alpha \in \Omega^k(\mathbb{R}^n)$, there exists $\beta \in \Omega^{k-1}(\mathbb{R}^n)$ such that $d\beta = \alpha$).

Exercise 17. We first prove this lemma for n = 2 and k = 1. Let $\alpha = Pdx + Qdy$ be a closed 1-form on \mathbb{R}^2 . We seek a function β so that $d\beta = \alpha$.

- (a) Write the equations $d\beta = \alpha$ and $d\alpha = 0$ in terms of their component functions.
- (b) If $f : \mathbb{R} \to \mathbb{R}$ is a function, an anti-derivative is $F(t) := \int_0^t f(s) ds$. What is a function $\mathbb{R}^2 \to \mathbb{R}$ whose x-partial equals P(x, y)?
- (c) The y-partial of your answer to (b) is probably not Q(x, y), but is close. Modify the function in (b) to get a primitive for α (Hint: you do not want to change the x-partial).

In this tutorial, we will use Stokes' theorem to find a volume (area) form on the sphere. View the unit sphere S^2 as inside \mathbb{R}^3 .

Exercise 18.

- (a) The differential form $dx \wedge dy \wedge dz \in \Omega^3(\mathbb{R}^3)$ is closed. In fact, it is exact (why?). Find some primitives ω .
- (b) Find a primitive ω which never vanishes on S^2 . We call a top degree differential form that never vanishes a *volume form*.
- (c) Evaluate $\int_{S^2} \omega$ (where S^2 is oriented with outward-pointing normals). Is this the surface area of the sphere? What if S^2 has radius $r \neq 1$?
- (d) Prove Archimedes' theorem: if D is the region of the sphere between the hyperplanes z = a and z = b, for -1 < a < b < 1 then the surface area of D depends only on b a (Hint: cylindrical coordinates).